Mattias Ohlsson
Professor
Towards Explaining Satellite Based Poverty Predictions with Convolutional Neural Networks
Författare
Redaktör
- Yannis Manolopoulos
- Zhi-Hua Zhou
Summary, in English
Deep convolutional neural networks (CNNs) have been shown to predict poverty and development indicators from satellite images with surprising accuracy. This paper presents a first attempt at analyzing the CNNs responses in detail and explaining the basis for the predictions. The CNN model, while trained on relatively low resolution day- and night-time satellite images, is able to outperform human subjects who look at high-resolution images in ranking the Wealth Index categories. Multiple explainability experiments performed on the model indicate the importance of the sizes of the objects, pixel colors in the image, and provide a visualization of the importance of different structures in input images. A visualization is also provided of type images that maximize the network prediction of Wealth Index, which provides clues on what the CNN prediction is based on.
Avdelning/ar
- Centrum för miljö- och klimatvetenskap (CEC)
- Institutionen för kulturgeografi och ekonomisk geografi
Publiceringsår
2023
Språk
Engelska
Publikation/Tidskrift/Serie
2023 IEEE 10th International Conference on Data Science and Advanced Analytics, DSAA 2023 - Proceedings
Länkar
Dokumenttyp
Konferensbidrag
Förlag
IEEE - Institute of Electrical and Electronics Engineers Inc.
Ämne
- Social Sciences Interdisciplinary
Nyckelord
- Deep Convolutional Neural Networks
- Explainable AI
- Poverty prediction
- Satellite Images
Conference name
10th IEEE International Conference on Data Science and Advanced Analytics, DSAA 2023
Conference date
2023-10-09 - 2023-10-12
Conference place
Thessaloniki, Greece
Aktiv
Published
ISBN/ISSN/Övrigt
- ISBN: 9798350345032