
Mattias Ohlsson
Professor

Interpretable AI diagnostics for dyspnea in the emergency department by deep learning and a massive regional health care dataset
Författare
Avdelning/ar
- Akutsjukvård
- EpiHealth: Epidemiology for Health
- LU profilområde: Naturlig och artificiell kognition
- eSSENCE: The e-Science Collaboration
- Artificiell intelligens och thoraxkirurgisk vetenskap (AICTS)
- EPI@LUND
- Kirurgi och folkhälsa
- Kardiovaskulär forskning - hypertoni
Publiceringsår
2023-05-31
Språk
Engelska
Fulltext
Dokumenttyp
Affisch
Ämne
- Cardiology and Cardiovascular Disease
Nyckelord
- artificial intelligence
- AI
- Dyspnea
- Artificiell intelligens
- AI
- Dyspne
Conference name
Swedish Emergency Medicine Talks - SWEETS23
Conference date
2023-05-31 - 2023-06-02
Conference place
Stockholm, Sweden
Aktiv
Published
Projekt
- Resource Management in the Emergency Department by using Machine Learning
- AIR Lund - Artificially Intelligent use of Registers
Forskningsgrupp
- Emergency medicine
- Artificial Intelligence in CardioThoracic Sciences (AICTS)
- EPI@LUND
- Surgery and public health
- Cardiovascular Research - Hypertension