Webbläsaren som du använder stöds inte av denna webbplats. Alla versioner av Internet Explorer stöds inte längre, av oss eller Microsoft (läs mer här: * https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Var god och använd en modern webbläsare för att ta del av denna webbplats, som t.ex. nyaste versioner av Edge, Chrome, Firefox eller Safari osv.

Erik Swietlicki. Foto.

Erik Swietlicki

Professor

Erik Swietlicki. Foto.

Carbonaceous aerosol source apportionment using the Aethalometer model -evaluation by radiocarbon and levoglucosan analysis at a rural background site in southern Sweden

Författare

  • Johan Martinsson
  • Hafiz Abdul Azeem
  • Moa Sporre
  • Robert Bergström
  • Erik Ahlberg
  • Emilie Öström
  • Adam Kristensson
  • Erik Swietlicki
  • Kristina Stenström

Summary, in English

With the present demand on fast and inexpensive aerosol source apportionment methods, the Aethalometer model was evaluated for a full seasonal cycle (June 2014–June 2015) at a rural atmospheric measurement station in southern Sweden by using radiocarbon and levoglucosan measurements. By utilizing differences in absorption of UV and IR, the Aethalometer model apportions carbon mass into wood burning (WB) and fossil fuel combustion (FF) aerosol. In this study, a small modification in the model in conjunction with carbon measurements from thermal–optical analysis allowed apportioned non-light-absorbing biogenic aerosol to vary in time. The absorption differences between WB and FF can be quantified by the absorption Ångström exponent (AAE). In this study AAEWB was set to 1.81 and AAEFF to 1.0. Our observations show that the AAE was elevated during winter (1.36 ± 0.07) compared to summer (1.12 ± 0.07). Quantified WB aerosol showed good agreement with levoglucosan concentrations, both in terms of correlation (R2 = 0. 70) and in comparison to reference emission inventories. WB aerosol showed strong seasonal variation with high concentrations during winter (0.65 µg m−3, 56 % of total carbon) and low concentrations during summer (0.07 µg m−3, 6 % of total carbon). FF aerosol showed less seasonal dependence; however, black carbon (BC) FF showed clear diurnal patterns corresponding to traffic rush hour peaks. The presumed non-light-absorbing biogenic carbonaceous aerosol concentration was high during summer (1.04 µg m−3, 72 % of total carbon) and low during winter (0.13 µg m−3, 8 % of total carbon). Aethalometer model results were further compared to radiocarbon and levoglucosan source apportionment results. The comparison showed good agreement for apportioned mass of WB and biogenic carbonaceous aerosol, but discrepancies were found for FF aerosol mass. The Aethalometer model overestimated FF aerosol mass by a factor of 1.3 compared to radiocarbon and levoglucosan source apportionment. A performed sensitivity analysis suggests that this discrepancy can be explained by interference of non-light-absorbing biogenic carbon during winter. In summary, the Aethalometer model offers a cost-effective yet robust high-time-resolution source apportionment at rural background stations compared to a radiocarbon and levoglucosan alternative.

Avdelning/ar

  • Kärnfysik
  • Centrum för miljö- och klimatvetenskap (CEC)
  • Centrum för analys och syntes
  • MERGE: ModElling the Regional and Global Earth system
  • Centrum för Aerosolforskning (CAST)
  • Lunds Tekniska Högskola

Publiceringsår

2017

Språk

Engelska

Sidor

4265-4281

Publikation/Tidskrift/Serie

Atmospheric Chemistry and Physics

Volym

17

Dokumenttyp

Artikel i tidskrift

Förlag

Copernicus GmbH

Ämne

  • Meteorology and Atmospheric Sciences

Status

Published

ISBN/ISSN/Övrigt

  • ISSN: 1680-7324