Webbläsaren som du använder stöds inte av denna webbplats. Alla versioner av Internet Explorer stöds inte längre, av oss eller Microsoft (läs mer här: * https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Var god och använd en modern webbläsare för att ta del av denna webbplats, som t.ex. nyaste versioner av Edge, Chrome, Firefox eller Safari osv.

Porträttbild på Edith Hammer. Foto.

Edith Hammer

Universitetslektor

Porträttbild på Edith Hammer. Foto.

Exposure to polystyrene nanoplastics reduces bacterial and fungal biomass in microfabricated soil models

Författare

  • Paola M Mafla-Endara
  • Viktoriia Meklesh
  • Jason P Beech
  • Pelle Ohlsson
  • Milda Pucetaite
  • Edith C Hammer

Summary, in English

Nanoplastics have been proven to induce toxicity in diverse organisms, yet their effect on soil microbes like bacteria and fungi remains largely unexplored. In this paper, we used micro-engineered soil models to investigate the effect of polystyrene (PS) nanospheres on Pseudomonas putida and Coprinopsis cinerea. Specifically, we explored the effects of increasing concentrations of 60 nm carboxylated bovine serum albumin (BSA) coated nanospheres (0, 0.5, 2, and 10 mg/L) on these bacterial and fungal model organisms respectively, over time. We found that both microorganisms could disperse through the PS solution, but long-distance dispersal was reduced by high concentrations. Microbial biomass decreased in all treatments, in which bacteria showed a linear dose response with the strongest effect at 10 mg/L concentration, and fungi showed a non-linear response with the strongest effect at 2 mg/L concentration. At the highest nanoplastics concentration, the first colonizing fungal hyphae adsorbed most of the PS nanospheres present in their vicinity, in a process that we termed the 'vacuum cleaner effect'. As a result, the toxicity effect of the original treatment on subsequently growing fungal hyphae was reduced to a growth level indistinguishable from the control. We did not find evidence that nanoplastics are able to penetrate bacterial nor fungal cell walls. Overall, our findings provide evidence that nanoplastics can cause a direct negative effect on soil microbes and highlight the need for further studies that can explain how the microbial stress response might affect soil functions.

Avdelning/ar

  • Centrum för miljö- och klimatvetenskap (CEC)
  • LU profilområde: Ljus och material
  • LTH profilområde: Nanovetenskap och halvledarteknologi
  • LTH profilområde: Teknik för hälsa
  • Fasta tillståndets fysik
  • NanoLund: Centre for Nanoscience
  • Acoustofluidics group
  • Avdelningen för Biomedicinsk teknik
  • Mikrobiologisk ekologi
  • MEMEG
  • BECC: Biodiversity and Ecosystem services in a Changing Climate
  • LU profilområde: Naturbaserade framtidslösningar

Publiceringsår

2023-12-15

Språk

Engelska

Publikation/Tidskrift/Serie

Science of the Total Environment

Volym

904

Dokumenttyp

Artikel i tidskrift

Förlag

Elsevier

Ämne

  • Microbiology
  • Environmental Sciences
  • Soil Science

Aktiv

Published

Forskningsgrupp

  • Acoustofluidics group
  • Microbial Ecology

ISBN/ISSN/Övrigt

  • ISSN: 1879-1026