Webbläsaren som du använder stöds inte av denna webbplats. Alla versioner av Internet Explorer stöds inte längre, av oss eller Microsoft (läs mer här: * https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Var god och använd en modern webbläsare för att ta del av denna webbplats, som t.ex. nyaste versioner av Edge, Chrome, Firefox eller Safari osv.

Default user image.

Carsten Peterson

Expert

Default user image.

Irreversibility of t-cell specification : Insights from computational modelling of a minimal network architecture

Författare

  • Erica Manesso
  • Hao Yuan Kueh
  • George Freedman
  • Ellen V. Rothenberg
  • Carsten Peterson

Summary, in English

Background/Objectives A cascade of gene activations under the control of Notch signalling is required during T-cell specification, when T-cell precursors gradually lose the potential to undertake other fates and become fully committed to the T-cell lineage.We elucidate how the gene/protein dynamics for a core transcriptional module governs this important process by computational means. Methods We first assembled existing knowledge about transcription factors known to be important for T-cell specification to form a minimal core module consisting of TCF-1, GATA-3, BCL11B, and PU.1 aiming at dynamical modeling. Model architecture was based on published experimental measurements of the effects on each factor when each of the others is perturbed. While several studies provided gene expression measurements at different stages of T-cell development, pure time series are not available, thus precluding a straightforward study of the dynamical interactions among these genes.We therefore translate stage dependent data into time series. A feed-forward motif with multiple positive feedbacks can account for the observed delay between BCL11B versus TCF-1 and GATA-3 activation by Notch signalling. With a novel computational approach, all 32 possible interactions among Notch signalling, TCF-1, and GATA-3 are explored by translating combinatorial logic expressions into differential equations for BCL11B production rate. Results Our analysis reveals that only 3 of 32 possible configurations, where GATA-3 works as a dimer, are able to explain not only the time delay, but very importantly, also give rise to irreversibility. The winning models explain the data within the 95% confidence region and are consistent with regard to decay rates. Conclusions This first generation model for early T-cell specification has relatively few players. Yet it explains the gradual transition into a committed state with no return. Encoding logics in a rate equation setting allows determination of binding properties beyond what is possible in a Boolean network.

Avdelning/ar

  • Beräkningsbiologi och biologisk fysik - Har omorganiserats

Publiceringsår

2016-08-01

Språk

Engelska

Publikation/Tidskrift/Serie

PLoS ONE

Volym

11

Issue

8

Dokumenttyp

Artikel i tidskrift

Förlag

Public Library of Science (PLoS)

Ämne

  • Bioinformatics and Systems Biology
  • Other Physics Topics
  • Genetics

Status

Published

ISBN/ISSN/Övrigt

  • ISSN: 1932-6203