Webbläsaren som du använder stöds inte av denna webbplats. Alla versioner av Internet Explorer stöds inte längre, av oss eller Microsoft (läs mer här: * https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Var god och använd en modern webbläsare för att ta del av denna webbplats, som t.ex. nyaste versioner av Edge, Chrome, Firefox eller Safari osv.

Default user image.

Anders Björkelund

Forskare

Default user image.

Machine learning compared with rule-in/rule-out algorithms and logistic regression to predict acute myocardial infarction based on troponin T concentrations

Författare

  • Anders Björkelund
  • Mattias Ohlsson
  • Jakob Lundager Forberg
  • Arash Mokhtari
  • Pontus Olsson de Capretz
  • Ulf Ekelund
  • Jonas Björk

Summary, in English


Objective
Computerized decision‐support tools may improve diagnosis of acute myocardial infarction (AMI) among patients presenting with chest pain at the emergency department (ED). The primary aim was to assess the predictive accuracy of machine learning algorithms based on paired high‐sensitivity cardiac troponin T (hs‐cTnT) concentrations with varying sampling times, age, and sex in order to rule in or out AMI.
Methods
In this register‐based, cross‐sectional diagnostic study conducted retrospectively based on 5695 chest pain patients at 2 hospitals in Sweden 2013–2014 we used 5‐fold cross‐validation 200 times in order to compare the performance of an artificial neural network (ANN) with European guideline‐recommended 0/1‐ and 0/3‐hour algorithms for hs‐cTnT and with logistic regression without interaction terms. Primary outcome was the size of the intermediate risk group where AMI could not be ruled in or out, while holding the sensitivity (rule‐out) and specificity (rule‐in) constant across models.
Results
ANN and logistic regression had similar (95%) areas under the receiver operating characteristics curve. In patients (n = 4171) where the timing requirements (0/1 or 0/3 hour) for the sampling were met, using ANN led to a relative decrease of 9.2% (95% confidence interval 4.4% to 13.8%; from 24.5% to 22.2% of all tested patients) in the size of the intermediate group compared to the recommended algorithms. By contrast, using logistic regression did not substantially decrease the size of the intermediate group.
Conclusion
Machine learning algorithms allow for flexibility in sampling and have the potential to improve risk assessment among chest pain patients at the ED.

Avdelning/ar

  • Beräkningsbiologi och biologisk fysik - Har omorganiserats
  • Artificiell intelligens och thoraxkirurgisk vetenskap (AICTS)
  • eSSENCE: The e-Science Collaboration
  • Skonsammare hjärtkirurgi
  • NPWT teknologin
  • Thoraxkirurgi
  • Medicin/akutsjukvård, Lund
  • EpiHealth: Epidemiology for Health
  • Akutsjukvård
  • EPI@LUND
  • Kirurgi och folkhälsa
  • Avdelningen för arbets- och miljömedicin

Publiceringsår

2021

Språk

Engelska

Publikation/Tidskrift/Serie

Journal of the American college of emergency physicians open

Volym

2

Issue

2

Dokumenttyp

Artikel i tidskrift

Förlag

John Wiley & Sons Inc.

Ämne

  • Cardiac and Cardiovascular Systems
  • Computer Systems

Aktiv

Published

Projekt

  • AIR Lund - Artificially Intelligent use of Registers

Forskningsgrupp

  • Artificial Intelligence in CardioThoracic Sciences (AICTS)
  • Less invasive cardiac surgery
  • NPWT technology
  • Emergency medicine
  • EPI@LUND
  • Surgery and public health

ISBN/ISSN/Övrigt

  • ISSN: 2688-1152