Webbläsaren som du använder stöds inte av denna webbplats. Alla versioner av Internet Explorer stöds inte längre, av oss eller Microsoft (läs mer här: * https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Var god och använd en modern webbläsare för att ta del av denna webbplats, som t.ex. nyaste versioner av Edge, Chrome, Firefox eller Safari osv.

Natascha Kljun. Foto.

Natascha Kljun

Professor

Natascha Kljun. Foto.

Estimating Canopy Gap Fraction Using ICESat GLAS within Australian Forest Ecosystems

Författare

  • Craig Mahoney
  • Chris Hopkinson
  • Natascha Kljun
  • Eva van Gorsel

Summary, in English

Spaceborne laser altimetry waveform estimates of canopy Gap Fraction (GF) vary with respect to discrete return airborne equivalents due to their greater sensitivity to reflectance differences between canopy and ground surfaces resulting from differences in footprint size, energy thresholding, noise characteristics and sampling geometry. Applying scaling factors to either the ground or canopy portions of waveforms has successfully circumvented this issue, but not at large scales. This study develops a method to scale spaceborne altimeter waveforms by identifying which remotely-sensed vegetation, terrain and environmental attributes are best suited to predicting scaling factors based on an independent measure of importance. The most important attributes were identified as: soil phosphorus and nitrogen contents, vegetation height, MODIS vegetation continuous fields product and terrain slope. Unscaled and scaled estimates of GF are compared to corresponding ALS data for all available data and an optimized subset, where the latter produced most encouraging results (R2 = 0.89, RMSE = 0.10). This methodology shows potential for successfully refining estimates of GF at large scales and identifies the most suitable attributes for deriving appropriate scaling factors. Large-scale active sensor estimates of GF can establish a baseline from which future monitoring investigations can be initiated via upcoming Earth Observation missions.

Publiceringsår

2017-01-11

Språk

Engelska

Publikation/Tidskrift/Serie

Remote Sensing

Volym

9

Issue

1

Dokumenttyp

Artikel i tidskrift

Förlag

MDPI AG

Ämne

  • Geophysics

Nyckelord

  • vegetation
  • remote sensing
  • forestry
  • LiDAR

Status

Published

ISBN/ISSN/Övrigt

  • ISSN: 2072-4292