Webbläsaren som du använder stöds inte av denna webbplats. Alla versioner av Internet Explorer stöds inte längre, av oss eller Microsoft (läs mer här: * https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Var god och använd en modern webbläsare för att ta del av denna webbplats, som t.ex. nyaste versioner av Edge, Chrome, Firefox eller Safari osv.

Porträtt av Henrik Smith. Foto.

Henrik Smith

Professor

Porträtt av Henrik Smith. Foto.

Turnover and nestedness drive plant diversity benefits of organic farming from local to landscape scales

Författare

  • Romain Carrié
  • Johan Ekroos
  • Henrik G. Smith

Summary, in English

Biodiversity-benefits of organic farming have mostly been documented at the field scale. However, these benefits from organic farming to species diversity may not propagate to larger scales because variation in the management of different crop types and seminatural habitats in conventional farms might allow species to cope with intensive crop management. We studied flowering plant communities using a spatially replicated design in different habitats (cereal, ley and seminatural grasslands) in organic and conventional farms, distributed along a gradient in proportion of seminatural grasslands. We developed a novel method to compare the rates of species turnover within and between habitats, and between the total species pools in the two farming systems. We found that the intrahabitat species turnover did not differ between organic and conventional farms, but that organic farms had a significantly higher interhabitat turnover of flowering plant species compared with conventional ones. This was mainly driven by herbicide-sensitive species in cereal fields in organic farms, as these contained 2.5 times more species exclusive to cereal fields compared with conventional farms. The farm-scale species richness of flowering plants was higher in organic compared with conventional farms, but only in simple landscapes. At the interfarm level, we found that 36% of species were shared between the two farming systems, 37% were specific to organic farms whereas 27% were specific to conventional ones. Therefore, our results suggest that that both community nestedness and species turnover drive changes in species composition between the two farming systems. These large-scale shifts in species composition were driven by both species-specific herbicide and nitrogen sensitivity of plants. Our study demonstrates that organic farming should foster a diversity of flowering plant species from local to landscape scales, by promoting unique sets of arable-adapted species that are scarce in conventional systems. In terms of biodiversity conservation, our results call for promoting organic farming over large spatial extents, especially in simple landscapes, where such transitions would benefit plant diversity most.

Avdelning/ar

  • Centrum för miljö- och klimatvetenskap (CEC)
  • BECC: Biodiversity and Ecosystem services in a Changing Climate
  • Biodiversitet

Publiceringsår

2022

Språk

Engelska

Publikation/Tidskrift/Serie

Ecological Applications

Volym

32

Issue

4

Dokumenttyp

Artikel i tidskrift

Förlag

Ecological Society of America

Ämne

  • Ecology

Nyckelord

  • beta-diversity
  • flowering plants
  • landscape
  • organic farming
  • species turnover

Status

Published

ISBN/ISSN/Övrigt

  • ISSN: 1051-0761