The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Erik Swietlicki. Photo.

Erik Swietlicki

Professor

Erik Swietlicki. Photo.

Extending the scope of dispersive liquid–liquid microextraction for trace analysis of 3-methyl-1,2,3-butanetricarboxylic acid in atmospheric aerosols leading to the discovery of iron(III) complexes

Author

  • Hafiz Abdul Azeem
  • Teshome Tolcha
  • Petter Ekman Hyberg
  • Sofia Essén
  • Kristina Stenström
  • Erik Swietlicki
  • Margareta Sandahl

Summary, in English


3-Methyl-1,2,3-butanetricarboxylic acid (MBTCA) is a secondary organic aerosol and can be used as a unique emission marker of biogenic emissions of monoterpenes. Seasonal variations and differences in vegetation cover around the world may lead to low atmospheric MBTCA concentrations, in many cases too low to be measured. Hence, an important tool to quantify the contribution of terrestrial vegetation to the loading of secondary organic aerosol may be compromised. To meet this challenge, a dispersive liquid–liquid microextraction (DLLME) method, known for the extraction of hydrophobic compounds, was extended to the extraction of polar organic compounds like MBTCA without compromising the efficiency of the method. The extraction solvent was fine-tuned using tri-n-octyl phosphine oxide as additive. A multivariate experimental design was applied for deeper understanding of significant variables and interactions between them. The optimum extraction conditions included 1-octanol with 15% tri-n-octyl phosphine oxide (w/w) as extraction solvent, methanol as dispersive solvent, 25% NaCl dissolved in 5 mL sample (w/w) acidified to pH 2 using HNO
3
, and extraction time of 15 min. A limit of detection of 0.12 pg/m
3
in air was achieved. Furthermore, unique complexation behavior of MBTCA with iron(III) was found when analyzed with ultra-high-performance liquid chromatography coupled with electrospray ionization–quadrupole time-of-flight mass spectrometry (UHPLC–ESI–QToF). A comprehensive overview of this complexation behavior of MBTCA was examined with systematically designed experiments. This newly discovered behavior of MBTCA will be of interest for further research on organometallic photooxidation chemistry of atmospheric aerosols. [Figure not available: see fulltext.].

Department/s

  • Centre for Analysis and Synthesis
  • MERGE: ModElling the Regional and Global Earth system
  • Nuclear physics
  • NanoLund: Centre for Nanoscience

Publishing year

2019-04-01

Language

English

Pages

2937-2944

Publication/Series

Analytical and Bioanalytical Chemistry

Volume

411

Issue

13

Document type

Journal article

Publisher

Springer

Topic

  • Analytical Chemistry

Keywords

  • Biogenic secondary organic aerosol
  • Dispersive liquid–liquid microextraction
  • MBTCA
  • Metal complexes
  • Trace analysis

Status

Published

ISBN/ISSN/Other

  • ISSN: 1618-2642