The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Foto Zhengyao Lu

Zhengyao Lu

Researcher

Foto Zhengyao Lu

Reconstructing Past Global Vegetation With Random Forest Machine Learning, Sacrificing the Dynamic Response for Robust Results

Author

  • Amelie Lindgren
  • Zhengyao Lu
  • Qiong Zhang
  • Gustaf Hugelius

Summary, in English

Vegetation is an important component in the Earth system, providing a direct link between the biosphere and atmosphere. As such, a representative vegetation pattern is needed to accurately simulate climate. We attempt to model global vegetation (biomes) with a data-driven approach, to test if this allows us to create robust global and regional vegetation patterns. This not only provides quantitative reconstructions of past vegetation cover as a climate forcing, but also improves our understanding of past land cover-climate interactions which have important implications for the future. By using a Random Forest (RF) machine learning tool, we train the vegetation reconstruction with available biomized pollen data of present and past conditions to produce broad-scale vegetation patterns for the preindustrial (PI), the mid-Holocene (MH, ∼6,000 years ago), and the Last Glacial Maximum (LGM, ∼21,000 years ago). We test the method's robustness by introducing a systematic temperature bias based on existing climate model spread and compare the result with that of LPJ-GUESS, an individual-based dynamic global vegetation model. The results show that the RF approach is able to produce robust patterns for periods and regions well constrained by evidence (the PI and the MH), but fails when evidence is scarce (the LGM). The apparent robustness of this method is achieved at the cost of sacrificing the ability to model dynamic vegetation response to a changing climate.

Department/s

  • Centre for Environmental and Climate Science (CEC)
  • Dept of Physical Geography and Ecosystem Science
  • MERGE: ModElling the Regional and Global Earth system
  • BECC: Biodiversity and Ecosystem services in a Changing Climate

Publishing year

2021

Language

English

Publication/Series

Journal of Advances in Modeling Earth Systems

Volume

13

Issue

2

Document type

Journal article

Publisher

Wiley-Blackwell

Topic

  • Physical Geography

Status

Published

ISBN/ISSN/Other

  • ISSN: 1942-2466