The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Wilhelm May. Photo.

Wilhelm May

Researcher

Wilhelm May. Photo.

Summertime Rossby waves in climate models : Substantial biases in surface imprint associated with small biases in upper-level circulation

Author

  • Fei Luo
  • Frank Selten
  • Kathrin Wehrli
  • Kai Kornhuber
  • Philippe Le Sager
  • Wilhelm May
  • Thomas Reerink
  • Sonia I. Seneviratne
  • Hideo Shiogama
  • Daisuke Tokuda
  • Hyungjun Kim
  • Dim Coumou

Summary, in English

In boreal summer, circumglobal Rossby waves can promote stagnating weather systems that favor extreme events like heat waves or droughts. Recent work showed that amplified Rossby wavenumber 5 and 7 show phase-locking behavior which can trigger simultaneous warm anomalies in different breadbasket regions in the Northern Hemisphere. These types of wave patterns thus pose a potential threat to human health and ecosystems. The representation of such persistent wave events in summer and their surface anomalies in general circulation models (GCMs) has not been systematically analyzed. Here we validate the representation of wavenumbers 1-10 in three state-of-The-Art global climate models (EC-Earth, CESM, and MIROC), quantify their biases, and provide insights into the underlying physical reasons for the biases. To do so, the ExtremeX experiments output data were used, consisting of (1) historic simulations with a freely running atmosphere with prescribed ocean and experiments that additionally (2) nudge towards the observed upper-level horizontal winds, (3) prescribe soil moisture conditions, or (4) do both. The experiments are used to trace the sources of the model biases to either the large-scale atmospheric circulation or surface feedback processes. Focusing on wave 5 and wave 7, we show that while the wave's position and magnitude are generally well represented during high-Amplitude (>g 1.5 SD) episodes, the associated surface anomalies are substantially underestimated. Near-surface temperature, precipitation and mean sea level pressure are typically underestimated by a factor of 1.5 in terms of normalized standard deviations. The correlations and normalized standard deviations for surface anomalies do not improve if the soil moisture is prescribed. However, the surface biases are almost entirely removed when the upper-level atmospheric circulation is nudged. When both prescribing soil moisture and nudging the upper-level atmosphere, then the surface biases remain quite similar to the experiment with a nudged atmosphere only. We conclude that the near-surface biases in temperature and precipitation are in the first place related to biases in the upper-level circulation. Thus, relatively small biases in the models' representation of the upper-level waves can strongly affect associated temperature and precipitation anomalies.

Department/s

  • Centre for Environmental and Climate Science (CEC)
  • MERGE: ModElling the Regional and Global Earth system

Publishing year

2022-08

Language

English

Pages

905-935

Publication/Series

Weather and Climate Dynamics

Volume

3

Issue

3

Document type

Journal article

Publisher

Copernicus GmbH

Topic

  • Meteorology and Atmospheric Sciences

Status

Published

ISBN/ISSN/Other

  • ISSN: 2698-4016