The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here:

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Per Persson. Photo.

Per Persson


Per Persson. Photo.

Quantitative adsorption and local structures of Gallium(III) at the water-alpha-FeOOH interface


  • Per Persson
  • K. Zivkovic
  • S. Sjoberg

Summary, in English

The adsorption of Ga(III) at the water-alpha-FeOOH (goethite) interface has been investigated by means of quantitative adsorption experiments, extended X-ray absorption fine structure (EXAFS) spectroscopy, and surface complexation modeling. Under the conditions studied, pH range 3-11 and surface coverages of 0.9-3.2 mu mol/m(2), Ga(III) was found to adsorb strongly to alpha-FeOOH, and the surface species were more resistant toward hydrolysis and formation of soluble Ga(OH)(4)(-) than either solid gallium hydroxides or soluble polynuclear complexes. The EXAFS measurements revealed the presence of octahedral Ga(III) complexes at the water-a-FeOOH interface, with practically no structural variations as a function of pH or total gallium concentration. Analysis of the first coordination shell required an anharmonic model indicating a distorted geometry of the GaO6 octahedra, with mean Ga-O distances at 1.96-1.98 angstrom. A method based on the continuous Cauchy wavelet transforms (CCWT) was used to identify backscattering atoms in the higher coordination shells. This analysis indicated predominately Fe backscattering, and the quantitative data fitting resulted in three Ga-Fe paths at 3.05, 3.2, and 3.55 angstrom, which correspond to two edge-sharing and one corner-sharing linkage, respectively. The collective results from EXAFS spectroscopy showed that Ga(III) adsorbs to Fe equivalent sites at the surface alpha-FeOOH as an extension of the rows of Fe octahedra in the bulk structure. This interpretation was further corroborated by a Ga-Fe-Fe multiple scattering path at 6.13 A. The quantitative adsorption and proton data were modeled using a surface complexation formalism based on a 1 pK(a) constant capacitance model. In agreement with the EXAFS results, the model obtained included one predominating surface complex with the stoichiometry =-FeOGa(OH)(2)(-0.5) and the stability constant log beta(intr.) = -2.55 +/- 0.04 (equivalent to-FeOH-0.5 + Ga3+ + 2H(2)O equivalent to FeOGa(OH)(2)(-0.5) + 3H(+)).

Publishing year










Document type

Journal article


The American Chemical Society (ACS)


  • Earth and Related Environmental Sciences




  • ISSN: 0743-7463