Your browser has javascript turned off or blocked. This will lead to some parts of our website to not work properly or at all. Turn on javascript for best performance.

The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Per Persson. Photo.

Per Persson

Director

Per Persson. Photo.

Balance between surface complexation and surface phase transformation at the alumina/water interface

Author

  • E. Laiti
  • Per Persson
  • L. O. Ohman

Summary, in English

This paper synthesizes and expands on the results of a recent series of investigations aimed at characterizing the interactions of orthophosphate, phenylphosphonate, and clodronate ions with hydrous alumina surfaces. The paper shows that gamma-Al2O3 is a thermodynamically unstable substance in water, which undergoes a (surface) phase transformation into bayerite, beta-Al(OH)(3). Furthermore, it also shows that while phenylphosphonate ions are exclusively adsorbed via surface complexation to the alumina surfaces, clodronate ions dissolve the alumina phase and precipitate as an aluminum clodronate phase. Orthophosphate ions show a transient behavior in this respect, and the limits for, and consequences of AlPO4(s) formation are determined via a series of chemical modeling calculations. The paper finally shows that, with respect to phenylphosphonate surface complexation, care must be taken when macroscopically derived stoichiometric compositions are used to assign microscopic surface complex structures.

Publishing year

1998

Language

English

Pages

825-831

Publication/Series

Langmuir

Volume

14

Document type

Journal article

Publisher

The American Chemical Society (ACS)

Topic

  • Earth and Related Environmental Sciences

Status

Published

ISBN/ISSN/Other

  • ISSN: 0743-7463