
Per Persson
Director

Desorption mechanisms of phosphate from ferrihydrite and goethite surfaces
Author
Summary, in English
The fate of phosphate in the environment is governed by reactions at particle surfaces. These adsorption and desorption reactions display biphasic kinetics involving an initial rapid reaction followed by a substantially slower one extending over long time periods. In this study we have investigated the molecular mechanisms of desorption kinetics of phosphate from ferrihydrite and goethite nanoparticles in the absence of competing ligands. Desorption was studied by means of in-situ infrared (IR) spectroscopy over a wide pH range and a time period of 24 h. The spectroscopic data sets were subjected to multivariate curve resolution alternating least squares (MCR-ALS), which enabled the resolution of surface species characterized by unique IR spectra together with their corresponding kinetic profiles. The desorption results showed the typical biphasic behavior and that increasing positive surface charge of ferrihydrite and goethite slowed down desorption of the negatively charged phosphate ions. Moreover, diprotonated phosphate desorbed faster than monoprotonated phosphate at a given pH. At circumneutral pH values desorption from ferrihydrite was substantially faster as compared to goethite, and this could be ascribed to electrostatic effects and differences in charging between ferrihydrite and goethite. The collective desorption results were explained by a model, consisting of a series monodentate phosphate surface complexes in different protonation states, in conjunction with a description that accounts for the electrostatic effects on desorption kinetics at charged mineral-water interfaces. The fast and slow desorption followed directly from this model and indicated that biphasic kinetics can be caused by a single phosphate surface complex as a result of decreasing surface coverage along with the lateral repulsive interactions between adsorbed phosphate groups. Hence, in contrast to previous models our study has shown that biphasic desorption kinetics do not have to involve several different structural complexes related to either weak and strong sites or a distribution of phosphate between external surfaces and mineral pores.
Department/s
- MEMEG
- Centre for Environmental and Climate Science (CEC)
- Microbial Ecology
Publishing year
2016-06-01
Language
English
Pages
54-64
Publication/Series
Chemical Geology
Volume
427
Document type
Journal article
Publisher
Elsevier
Topic
- Geochemistry
Keywords
- Desorption
- Electrostatic interactions
- Ferrihydrite
- Goethite
- Infrared spectroscopy
- MCR-ALS
- Phosphate
Status
Published
Project
- MICCS - Molecular Interactions Controlling soil Carbon Sequestration
Research group
- Microbial Ecology
ISBN/ISSN/Other
- ISSN: 0009-2541