Your browser has javascript turned off or blocked. This will lead to some parts of our website to not work properly or at all. Turn on javascript for best performance.

The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Per Persson. Photo.

Per Persson

Director

Per Persson. Photo.

Coordination of acetate to Al(III) in aqueous solution and at the water-aluminum hydroxide interface: A potentiometric and attenuated total reflectance FTIR study

Author

  • Per Persson
  • M. Karlsson
  • L. O. Ohman

Summary, in English

Attenuated total reflectance FTIR spectroscopy was used to characterize Al(III)-acetate complexation at 25 degrees C, in homogeneous aqueous solution and at the water-aluminum hydroxide interface. The data collected in aqueous solution, at [Al](tot) = 0.080 M, [OAc](tot) = 0.040 M, and pH < 4.3, indicate the presence of only one dominating complex which, by spectral analysis, is shown not to involve monodentate acetate coordination but rather a syn-syn bridging geometry. In quantitative terms, the data strongly support the appearance of a binuclear mixed-hydroxo species [Al-2(OH)(2)OAc](3+) which, in view of the above, probably consists of a dihydroxo-bridged Al-2(mu-OH)(2)-unit to which the acetate ion bridges via the apices of the two Al(III) octahedra. Also at the water-aluminum hydroxide interface, only one dominating surface complex is indicated. Zn contrast to the aqueous species this complex is a weak mononuclear outer-sphere complex, and it is speculated that, due to a lack of structural flexibility of the surface Al(III) octahedra, the formation of a bridging inner-sphere complex is prohibited. Based on the concept of surface complexation, and utilizing the extended constant capacitance model to account for contributions from electrostatic forces, an equilibrium model, which quantitatively describes these interactions in an ionic medium of 0.1 M NaCl, is presented. Copyright (C) 1998 Elsevier Science Ltd.

Publishing year

1998

Language

English

Pages

3657-3668

Publication/Series

Geochimica et Cosmochimica Acta

Volume

62

Document type

Journal article

Publisher

Elsevier

Topic

  • Earth and Related Environmental Sciences

Status

Published

ISBN/ISSN/Other

  • ISSN: 0016-7037