The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Portrait image with green background. Photo.

Martin Eriksson

Postdoc

Portrait image with green background. Photo.

Adaptive, maladaptive, neutral, or absent plasticity : Hidden caveats of reaction norms

Author

  • Martin Eriksson
  • Alexandra Kinnby
  • Pierre De Wit
  • Marina Rafajlović

Summary, in English

Adaptive phenotypic plasticity may improve the response of individuals when faced with new environmental conditions. Typically, empirical evidence for plasticity is based on phenotypic reaction norms obtained in reciprocal transplant experiments. In such experiments, individuals from their native environment are transplanted into a different environment, and a number of trait values, potentially implicated in individuals' response to the new environment, are measured. However, the interpretations of reaction norms may differ depending on the nature of the assessed traits, which may not be known beforehand. For example, for traits that contribute to local adaptation, adaptive plasticity implies nonzero slopes of reaction norms. By contrast, for traits that are correlated to fitness, high tolerance to different environments (possibly due to adaptive plasticity in traits that contribute to adaptation) may, instead, result in flat reaction norms. Here we investigate reaction norms for adaptive versus fitness-correlated traits and how they may affect the conclusions regarding the contribution of plasticity. To this end, we first simulate range expansion along an environmental gradient where plasticity evolves to different values locally and then perform reciprocal transplant experiments in silico. We show that reaction norms alone cannot inform us whether the assessed trait exhibits locally adaptive, maladaptive, neutral, or no plasticity, without any additional knowledge of the traits assessed and species' biology. We use the insights from the model to analyse and interpret empirical data from reciprocal transplant experiments involving the marine isopod Idotea balthica sampled from two geographical locations with different salinities, concluding that the low-salinity population likely has reduced adaptive plasticity relative to the high-salinity population. Overall, we conclude that, when interpreting results from reciprocal transplant experiments, it is necessary to consider whether traits assessed are locally adaptive with respect to the environmental variable accounted for in the experiments or correlated to fitness.

Publishing year

2023-02

Language

English

Pages

486-503

Publication/Series

Evolutionary Applications

Volume

16

Issue

2

Document type

Journal article

Publisher

Wiley-Blackwell

Topic

  • Evolutionary Biology

Keywords

  • environmental gradient
  • environmental tolerance
  • local adaptation
  • phenotypic buffering
  • range expansion
  • reciprocal transplant experiments

Status

Published

ISBN/ISSN/Other

  • ISSN: 1752-4571