The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Portrait of Henrik Smith. Photo.

Henrik Smith

Professor

Portrait of Henrik Smith. Photo.

Optimizing Species Richness in Mosaic Landscapes : A Probabilistic Model of Species-Area Relationships

Author

  • Ola Olsson
  • Mark V. Brady
  • Martin Stjernman
  • Henrik G. Smith

Summary, in English

Most landscapes are comprised of multiple habitat types differing in the biodiversity they contain. This is certainly true for human modified landscapes, which are often a mix of habitats managed with different intensity, semi-natural habitats and even pristine habitats. To understand fundamental questions of how the composition of such landscapes affects biodiversity conservation, and to evaluate biodiversity consequences of policies that affect the composition of landscapes, there is a need for models able to translate information on biodiversity from individual habitats to landscape-wide predictions. However, this is complicated by species richness not being additive. We constructed a model to help analyze and solve this problem based on two simple assumptions. Firstly, that a habitat can be characterized by the biological community inhabiting it; i.e., which species occur and at what densities. Secondly, that the probability of a species occurring in a particular unit of land is dictated by its average density in the associated habitats, its spatial aggregation, and the size of the land unit. This model leads to a multidimensional species-area relation (one dimension per habitat). If the goal is to maximize species diversity at the landscape scale (γ-diversity), within a fixed area or under a limited budget, the model can be used to find the optimal allocation of the different habitats. In general, the optimal solution depends on the total size of the species pool of the different habitats, but also their similarity (β-diversity). If habitats are complementary (high β), a mix is usually preferred, even if one habitat is poorer (lower α diversity in one habitat). The model lends itself to economic analyses of biodiversity problems, without the need to monetarize biodiversity value, i.e., cost-effectiveness analysis. Land prices and management costs will affect the solution, such that the model can be used to estimate the number of species gained in relation to expenditure on each habitat. We illustrate the utility of the model by applying it to agricultural landscapes in southern Sweden and demonstrate how empirical monitoring data can be used to find the best habitat allocation for biodiversity conservation within and between landscapes.

Department/s

  • Biodiversity
  • BECC: Biodiversity and Ecosystem services in a Changing Climate
  • Biodiversity and Conservation Science
  • Centre for Environmental and Climate Science (CEC)

Publishing year

2021

Language

English

Publication/Series

Frontiers in Conservation Science

Volume

2

Document type

Journal article

Publisher

Frontiers Media S. A.

Topic

  • Ecology

Keywords

  • agri-environment schemes
  • biodiversity
  • community
  • environmental policy
  • landscape
  • mosaic
  • species-area relation

Status

Published

Research group

  • Biodiversity and Conservation Science

ISBN/ISSN/Other

  • ISSN: 2673-611X