The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Natascha Kljun. Photo.

Natascha Kljun

Professor

Natascha Kljun. Photo.

Including the Urban Canopy Layer in a Lagrangian Particle Dispersion Model

Author

  • Stefan Stöckl
  • Mathias W. Rotach
  • Natascha Kljun

Summary, in English

In this study we introduce a novel extension of an existing Lagrangian particle dispersion model for application over urban areas by explicitly taking into account the urban canopy layer. As commonly done, the original model uses the zero-plane displacement as a lower boundary condition, while the extension reaches to the ground. To achieve this, spatially-averaged parametrizations of flow and turbulence characteristics are created by fitting functions to observational and numerical data. The extended model is verified with respect to basic model assumptions (well-mixed condition) and its behaviour is investigated for unstable/neutral/stable atmospheric stabilities. A sensitivity study shows that the newly introduced model parameters characterizing the canopy turbulence impact the model output less than previously existing model parameters. Comparing concentration predictions to the Basel Urban Boundary Layer Experiment—where concentrations were measured near roof level—shows that the modified model performs slightly better than the original model. More importantly, the extended model can also be used to explicitly treat surface sources (traffic) and assess concentrations within the urban canopy and near the surface (pedestrian level). The small improvement with respect to roof level concentrations suggests that the parametrized canopy profiles for flow and turbulence characteristics realistically represent the dispersion environment on average.

Department/s

  • MERGE: ModElling the Regional and Global Earth system
  • BECC: Biodiversity and Ecosystem services in a Changing Climate
  • Centre for Environmental and Climate Science (CEC)

Publishing year

2022

Language

English

Pages

1-34

Publication/Series

Boundary-Layer Meteorology

Volume

185

Issue

1

Document type

Journal article

Publisher

Springer

Topic

  • Earth and Related Environmental Sciences

Keywords

  • Global sensitivity analysis
  • Pedestrian level
  • Turbulence parametrization
  • Urban air pollution
  • Well-mixed condition

Status

Published

ISBN/ISSN/Other

  • ISSN: 0006-8314