The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Josefin Madjidian. Photo.

Josefin Madjidian

Research coordinator

Josefin Madjidian. Photo.

Geographic variation in floral traits is associated with environmental and genetic differences among populations of the mixed mating species Collinsia heterophylla (Plantaginaceae)

Author

  • Åsa Lankinen
  • Josefin A. Madjidian
  • Stefan Andersson

Summary, in English

Relatively few studies have investigated how geography, environmental factors, and genetics affect floral trait variation. We used mixed-mating Collinsia heterophylla Buist to explore variation in a suite of floral traits related to mating system in populations representing four geographic regions of California, USA, and relate this variation to geography, climatic factors, and local site characteristics. We evaluated the environmental vs. genetic trait variability in the greenhouse. Stage of anther–stigma contact correlated positively with temperature, stage of stigma receptivity was negatively associated with vegetation cover, and flower size differed among populations without any clear relation to environmental factors. Greenhouse data indicated heritability for stage of anther– stigma contact, flower size, and time to flowering, and positive correlations between field and greenhouse for stage of stigma receptivity and flower size; however, stage of anther–stigma contact showed a high degree of environmental influence. Stage of anther–stigma contact covaried positively with stage of stigma receptivity and flower size across maternal families, indicating genetic correlations between traits. In conclusion, phenotypic floral variation within mixed-mating C. heterophylla is mostly determined by a genetic component. Geography, environment, and genetics affect traits differently, suggesting that ecological and evolutionary processes contribute to shaping variability in mating system-related traits.

Department/s

  • Biodiversity
  • BECC: Biodiversity and Ecosystem services in a Changing Climate

Publishing year

2017

Language

English

Pages

121-128

Publication/Series

Botany

Volume

95

Issue

2

Document type

Journal article

Publisher

Canadian Science Publishing, NRC Research Press

Topic

  • Botany

Keywords

  • Climate
  • Genetic correlation
  • Heritability
  • Mating system evolution
  • Phenotypic plasticity

Status

Published

ISBN/ISSN/Other

  • ISSN: 1916-2804