The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Photo of Victor Olariu

Victor Olariu

Senior lecturer

Photo of Victor Olariu

Dynamic Analysis of Gene Expression and Genome-wide Transcription Factor Binding during Lineage Specification of Multipotent Progenitors

Author

  • Gillian May
  • Shamit Soneji
  • Alex J. Tipping
  • José Teles
  • Simon J. McGowan
  • Mengchu Wu
  • Yanping Guo
  • Cristina Fugazza
  • John Brown
  • Göran Karlsson
  • Cristina Pina
  • Victor Olariu
  • Stephen Taylor
  • Daniel G. Tenen
  • Carsten Peterson
  • Tariq Enver

Summary, in English

We used the paradigmatic GATA-PU.1 axis to explore, at the systems level, dynamic relationships between transcription factor (TF) binding and global gene expression programs as multipotent cells differentiate. We combined global ChIP-seq of GATA1, GATA2, and PU.1 with expression profiling during differentiation to erythroid and neutrophil lineages. Our analysis reveals (1) differential complexity of sequence motifs bound by GATA1, GATA2, and PU.1; (2) the scope and interplay of GATA1 and GATA2 programs within, and during transitions between, different cell compartments, and the extent of their hard-wiring by DNA motifs; (3) the potential to predict gene expression trajectories based on global associations between TF-binding data and target gene expression; and (4) how dynamic modeling of DNA-binding and gene expression data can be used to infer regulatory logic of TF circuitry. This rubric exemplifies the utility of this cross-platform resource for deconvoluting the complexity of transcriptional programs controlling stem/progenitor cell fate in hematopoiesis.

Department/s

  • Computational Biology and Biological Physics - Undergoing reorganization
  • StemTherapy: National Initiative on Stem Cells for Regenerative Therapy

Publishing year

2013

Language

English

Pages

754-768

Publication/Series

Cell Stem Cell

Volume

13

Issue

6

Document type

Journal article

Publisher

Cell Press

Topic

  • Cell Biology
  • Bioinformatics and Systems Biology
  • Other Physics Topics

Status

Published

ISBN/ISSN/Other

  • ISSN: 1934-5909