The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Natascha Kljun. Photo.

Natascha Kljun

Professor

Natascha Kljun. Photo.

Slope Estimation from ICESat/GLAS

Author

  • Craig Mahoney
  • Natascha Kljun
  • Sietse O. Los
  • Laura Chasmer
  • Jorg M. Hacker
  • Christopher Hopkinson
  • Peter R. J. North
  • Jacqueline A. B. Rosette
  • Eva van Gorsel

Summary, in English

We present a novel technique to infer ground slope angle from waveform LiDAR, known as the independent slope method (ISM). The technique is applied to large footprint waveforms (similar to 60 m mean diameter) from the Ice, Cloud and Land Elevation Satellite (ICESat) Geoscience Laser Altimeter System (GLAS) to produce a slope dataset of near-global coverage at 0.5 degrees x 0.5 degrees resolution. ISM slope estimates are compared against high resolution airborne LiDAR slope measurements for nine sites across three continents. ISM slope estimates compare better with the aircraft data (R-2 = 0.87 and RMSE = 5.16 degrees) than the Shuttle Radar Topography Mission Digital Elevation Model (SRTM DEM) inferred slopes (R-2 = 0.71 and RMSE = 8.69 degrees). ISM slope estimates are concurrent with GLAS waveforms and can be used to correct biophysical parameters, such as tree height and biomass. They can also be fused with other DEMs, such as SRTM, to improve slope estimates.

Department/s

  • Dept of Physical Geography and Ecosystem Science

Publishing year

2014

Language

English

Pages

10051-10069

Publication/Series

Remote Sensing

Volume

6

Issue

10

Document type

Journal article

Publisher

MDPI AG

Topic

  • Physical Geography

Keywords

  • LiDAR
  • slope
  • terrain
  • waveform
  • SRTM
  • biophysical parameter retrieval

Status

Published

ISBN/ISSN/Other

  • ISSN: 2072-4292