Menu

Javascript is not activated in your browser. This website needs javascript activated to work properly.
You are here

Uncertainty in QSAR predictions.

Author:
  • Ullrika Sahlin
Publishing year: 2013
Language: English
Pages: 111-125
Publication/Series: ATLA: Alternatives To Laboratory Animals
Volume: 41
Issue: 1
Document type: Journal article
Publisher: FRAME

Abstract english

It is relevant to consider uncertainty in individual predictions when quantitative structure-activity (or property) relationships (QSARs) are used to support decisions of high societal concern. Successful communication of uncertainty in the integration of QSARs in chemical safety assessment under the EU Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH) system can be facilitated by a common understanding of how to define, characterise, assess and evaluate uncertainty in QSAR predictions. A QSAR prediction is, compared to experimental estimates, subject to added uncertainty that comes from the use of a model instead of empirically-based estimates. A framework is provided to aid the distinction between different types of uncertainty in a QSAR prediction: quantitative, i.e. for regressions related to the error in a prediction and characterised by a predictive distribution; and qualitative, by expressing our confidence in the model for predicting a particular compound based on a quantitative measure of predictive reliability. It is possible to assess a quantitative (i.e. probabilistic) predictive distribution, given the supervised learning algorithm, the underlying QSAR data, a probability model for uncertainty and a statistical principle for inference. The integration of QSARs into risk assessment may be facilitated by the inclusion of the assessment of predictive error and predictive reliability into the "unambiguous algorithm", as outlined in the second OECD principle.

Keywords

  • Earth and Related Environmental Sciences

Other

Published
  • ISSN: 0261-1929
me in Lundagård
E-mail: ullrika.sahlin [at] cec.lu.se

Researcher

Centre for Environmental and Climate Research (CEC)

+46 46 222 68 31

+46 73 827 44 32

E-D340

50

Read more on the blog

The dawn of the new research group “UnEviL”

2017-04-13
Uncertainty and Evidence Lab is the name of a new research group at Lund University. The group is led by Ullrika Sahlin at the Centre of Env…

Bayes@Lund2017 20th April

2017-03-23
The program for Bayes@Lund2017 is now ready Follow us at #bayeslund17 on twitter We start in room MA4, Maths building Annex, Sölvegatan 20. …

Workshop on Bayesian Networks for risk assessment and decision making

2017-02-08
We had a successful workshop on Bayesian Networks in risk assessment and decision making in Lund March 28 and 29th, 2017. This workshop was …

Centre for Environmental and Climate Research, CEC

Sölvegatan 37
223 62 Lund, Sweden

Visiting address
The Ecology building, Sölvegatan 37, Lund