The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Photo of Tobias Ambjörnsson

Tobias Ambjörnsson

Senior lecturer

Photo of Tobias Ambjörnsson

Enzyme-free optical DNA mapping of the human genome using competitive binding

Author

  • Vilhelm Müller
  • Albertas Dvirnas
  • John Andersson
  • Vandana Singh
  • Sriram Kk
  • Pegah Johansson
  • Yuval Ebenstein
  • Tobias Ambjörnsson
  • Fredrik Westerlund

Summary, in English

Optical DNA mapping (ODM) allows visualization of long-range sequence information along single DNA molecules. The data can for example be used for detecting long range structural variations, for aiding DNA sequence assembly of complex genomes and for mapping epigenetic marks and DNA damage across the genome. ODM traditionally utilizes sequence specific marks based on nicking enzymes, combined with a DNA stain, YOYO-1, for detection of the DNA contour. Here we use a competitive binding approach, based on YOYO-1 and netropsin, which highlights the contour of the DNA molecules, while simultaneously creating a continuous sequence specific pattern, based on the AT/GC variation along the detected molecule. We demonstrate and validate competitive-binding-based ODM using bacterial artificial chromosomes (BACs) derived from the human genome and then turn to DNA extracted from white blood cells. We generalize our findings with in-silico simulations that show that we can map a vast majority of the human genome. Finally, we demonstrate the possibility of combining competitive binding with enzymatic labeling by mapping DNA damage sites induced by the cytotoxic drug etoposide to the human genome. Overall, we demonstrate that competitive-binding-based ODM has the potential to be used both as a standalone assay for studies of the human genome, as well as in combination with enzymatic approaches, some of which are already commercialized.

Department/s

  • Computational Biology and Biological Physics - Undergoing reorganization

Publishing year

2019-09-05

Language

English

Publication/Series

Nucleic Acids Research

Volume

47

Issue

15

Document type

Journal article

Publisher

Oxford University Press

Topic

  • Cell and Molecular Biology
  • Biophysics
  • Other Physics Topics

Status

Published

ISBN/ISSN/Other

  • ISSN: 1362-4962