The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Photo of Tobias Ambjörnsson

Tobias Ambjörnsson

Senior lecturer

Photo of Tobias Ambjörnsson

Ageing single file motion

Author

  • R. Metzler
  • Lloyd Sanders
  • M. A. Lomholt
  • L. Lizana
  • Karl Fogelmark
  • Tobias Ambjörnsson

Summary, in English

The mean squared displacement of a tracer particle in a single file of identical particles with excluded volume interactions shows the famed Harris scaling aEurox (2)(t)aEuro parts per thousand a parts per thousand integral K (1/2) t (1/2) as function of time. Here we study what happens to this law when each particle of the single file interacts with the environment such that it is transiently immobilised for times tau with a power-law distribution psi(tau) a parts per thousand integral (tau(a similar to...))(alpha), and different ranges of the exponent alpha are considered. We find a dramatic slow-down of the motion of a tracer particle from Harris' law to an ultraslow, logarithmic time evolution aEurox (2)(t)aEuro parts per thousand a parts per thousand integral K (0) log (1/2)(t) when 0 < alpha < 1. In the intermediate case 1 < alpha < 2, we observe a power-law form for the mean squared displacement, with a modified scaling exponent as compared to Harris' law. Once alpha is larger than two, the Brownian single file behaviour and thus Harris' law are restored. We also point out that this process is weakly non-ergodic in the sense that the time and ensemble averaged mean squared displacements are disparate.

Department/s

  • Computational Biology and Biological Physics - Undergoing reorganization

Publishing year

2014

Language

English

Pages

3287-3293

Publication/Series

The European Physical Journal. Special Topics

Volume

223

Issue

14

Document type

Journal article

Publisher

Springer

Topic

  • Biophysics
  • Other Physics Topics

Status

Published

ISBN/ISSN/Other

  • ISSN: 1951-6355