
Tobias Ambjörnsson
Senior lecturer

Modeling protein target search in human chromosomes
Author
Summary, in English
Several processes in the cell, such as gene regulation, start when key proteins recognize and bind to short DNA sequences. However, as these sequences can be hundreds of million times shorter than the genome, they are hard to find by simple diffusion: diffusion-limited association rates may underestimate in vitro measurements up to several orders of magnitude. Moreover, the rates increase if the DNA is coiled rather than straight. Here we model how this works in vivo in mammalian cells. We use chromatin-chromatin contact data from Hi-C experiments to map the protein target-search onto a network problem. The nodes represent DNA segments and the weight of the links are proportional to measured contact probabilities. We then put forward a diffusion-reaction equation for the density of searching protein that allows us to calculate the association rates across the genome analytically. For segments where the rates are high, we find that they are enriched with active gene starts and have high RNA expression levels. This paper suggests that the DNA's 3D conformation is important for protein search times in vivo and offers a method to interpret protein-binding profiles in eukaryotes that cannot be explained by the DNA sequence itself.
Department/s
- Computational Biology and Biological Physics - Undergoing reorganization
Publishing year
2021-01-19
Language
English
Publication/Series
Physical Review Research
Volume
3
Issue
1
Links
Document type
Journal article
Publisher
American Physical Society
Topic
- Biochemistry and Molecular Biology
- Other Physics Topics
- Biophysics
Status
Published
ISBN/ISSN/Other
- ISSN: 2643-1564