Webbläsaren som du använder stöds inte av denna webbplats. Alla versioner av Internet Explorer stöds inte längre, av oss eller Microsoft (läs mer här: * https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Var god och använd en modern webbläsare för att ta del av denna webbplats, som t.ex. nyaste versioner av Edge, Chrome, Firefox eller Safari osv.

Per Persson. Foto.

Per Persson

Dekan

Per Persson. Foto.

Oxidation of a Dimethoxyhydroquinone by Ferrihydrite and Goethite Nanoparticles : Iron Reduction versus Surface Catalysis

Författare

  • Lelde Krumina
  • Gry Lyngsie
  • Anders Tunlid
  • Per Persson

Summary, in English

Hydroquinones are important mediators of electron transfer reactions in soils with a capability to reduce Fe(III) minerals and molecular oxygen, and thereby generating Fenton chemistry reagents. This study focused on 2,6-dimethoxy hydroquinone (2,6-DMHQ), an analogue to a common fungal metabolite, and its reaction with ferrihydrite and goethite under variable pH and oxygen concentrations. Combined wet-chemical and spectroscopic analyses showed that both minerals effectively oxidized 2,6-DMHQ in the presence of oxygen. Under anaerobic conditions the first-order oxidation rate constants decreased by one to several orders of magnitude depending on pH and mineral. Comparison between aerobic and anaerobic results showed that ferrihydrite promoted 2,6-DMHQ oxidation both via reductive dissolution and heterogeneous catalysis while goethite mainly caused catalytic oxidation. These results were in agreement with changes in the reduction potential (EH) of the Fe(III) oxide/Fe(II)aq redox couple as a function of dissolved Fe(II) where EH of goethite was lower than ferrihydrite at any given Fe(II) concentration, which makes ferrihydrite more prone to reductive dissolution by the 2,6-DMBQ/2,6-DMHQ redox couple. This study showed that reactions between hydroquinones and iron oxides could produce favorable conditions for formation of reactive oxygen species, which are required for nonenzymatic Fenton-based decomposition of soil organic matter.

Avdelning/ar

  • Centrum för miljö- och klimatvetenskap (CEC)
  • MEMEG
  • BECC: Biodiversity and Ecosystem services in a Changing Climate
  • Mikrobiologisk ekologi

Publiceringsår

2017-08-15

Språk

Engelska

Sidor

9053-9061

Publikation/Tidskrift/Serie

Environmental Science and Technology

Volym

51

Issue

16

Dokumenttyp

Artikel i tidskrift

Förlag

The American Chemical Society (ACS)

Ämne

  • Geochemistry

Status

Published

Projekt

  • MICCS - Molecular Interactions Controlling soil Carbon Sequestration

Forskningsgrupp

  • Microbial Ecology

ISBN/ISSN/Övrigt

  • ISSN: 0013-936X