Webbläsaren som du använder stöds inte av denna webbplats. Alla versioner av Internet Explorer stöds inte längre, av oss eller Microsoft (läs mer här: * https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Var god och använd en modern webbläsare för att ta del av denna webbplats, som t.ex. nyaste versioner av Edge, Chrome, Firefox eller Safari osv.

Paul Miller. Foto.

Paul Miller

Universitetslektor

Paul Miller. Foto.

Tundra landscape heterogeneity, not interannual variability, controls the decadal regional carbon balance in the Western Russian Arctic

Författare

  • Claire C. Treat
  • Maija E. Marushchak
  • Carolina Voigt
  • Yu Zhang
  • Zeli Tan
  • Qianlai Zhuang
  • Tarmo A. Virtanen
  • Aleksi Räsänen
  • Christina Biasi
  • Gustaf Hugelius
  • Dmitry Kaverin
  • Paul A. Miller
  • Martin Stendel
  • Vladimir Romanovsky
  • Felix Rivkin
  • Pertti J. Martikainen
  • Narasinha J. Shurpali

Summary, in English

Across the Arctic, the net ecosystem carbon (C) balance of tundra ecosystems is highly uncertain due to substantial temporal variability of C fluxes and to landscape heterogeneity. We modeled both carbon dioxide (CO2) and methane (CH4) fluxes for the dominant land cover types in a ~100-km2 sub-Arctic tundra region in northeast European Russia for the period of 2006–2015 using process-based biogeochemical models. Modeled net annual CO2 fluxes ranged from −300 g C m−2 year−1 [net uptake] in a willow fen to 3 g C m−2 year−1 [net source] in dry lichen tundra. Modeled annual CH4 emissions ranged from −0.2 to 22.3 g C m−2 year−1 at a peat plateau site and a willow fen site, respectively. Interannual variability over the decade was relatively small (20%–25%) in comparison with variability among the land cover types (150%). Using high-resolution land cover classification, the region was a net sink of atmospheric CO2 across most land cover types but a net source of CH4 to the atmosphere due to high emissions from permafrost-free fens. Using a lower resolution for land cover classification resulted in a 20%–65% underestimation of regional CH4 flux relative to high-resolution classification and smaller (10%) overestimation of regional CO2 uptake due to the underestimation of wetland area by 60%. The relative fraction of uplands versus wetlands was key to determining the net regional C balance at this and other Arctic tundra sites because wetlands were hot spots for C cycling in Arctic tundra ecosystems.

Avdelning/ar

  • Institutionen för naturgeografi och ekosystemvetenskap
  • eSSENCE: The e-Science Collaboration
  • MERGE: ModElling the Regional and Global Earth system
  • Centrum för miljö- och klimatvetenskap (CEC)
  • BECC: Biodiversity and Ecosystem services in a Changing Climate

Publiceringsår

2018

Språk

Engelska

Sidor

5188-5204

Publikation/Tidskrift/Serie

Global Change Biology

Volym

24

Issue

11

Dokumenttyp

Artikel i tidskrift

Förlag

Wiley-Blackwell

Ämne

  • Physical Geography

Nyckelord

  • ecosystem modeling
  • methane
  • net ecosystem CO exchange
  • peatland
  • permafrost
  • regional carbon balance
  • Russia
  • Tundra

Status

Published

ISBN/ISSN/Övrigt

  • ISSN: 1354-1013