Webbläsaren som du använder stöds inte av denna webbplats. Alla versioner av Internet Explorer stöds inte längre, av oss eller Microsoft (läs mer här: * https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Var god och använd en modern webbläsare för att ta del av denna webbplats, som t.ex. nyaste versioner av Edge, Chrome, Firefox eller Safari osv.

Foto på Mattias Ohlsson

Mattias Ohlsson

Professor

Foto på Mattias Ohlsson

A Novel Automated Platform for Quantifying the Extent of Skeletal Tumour Involvement in Prostate Cancer Patients Using the Bone Scan Index.

Författare

  • David Ulmert
  • Reza Kaboteh
  • Josef J Fox
  • Caroline Savage
  • Michael J Evans
  • Hans Lilja
  • Per-Anders Abrahamsson
  • Thomas Björk
  • Axel Gerdtsson
  • Anders Bjartell
  • Peter Gjertsson
  • Peter Höglund
  • Milan Lomsky
  • Mattias Ohlsson
  • Jens Richter
  • May Sadik
  • Michael J Morris
  • Howard I Scher
  • Karl Sjöstrand
  • Alice Yu
  • Madis Suurküla
  • Lars Edenbrandt
  • Steven M Larson

Summary, in English

BACKGROUND:

There is little consensus on a standard approach to analysing bone scan images. The Bone Scan Index (BSI) is predictive of survival in patients with progressive prostate cancer (PCa), but the popularity of this metric is hampered by the tedium of the manual calculation.

OBJECTIVE:

Develop a fully automated method of quantifying the BSI and determining the clinical value of automated BSI measurements beyond conventional clinical and pathologic features.



DESIGN, SETTING, AND PARTICIPANTS:

We conditioned a computer-assisted diagnosis system identifying metastatic lesions on a bone scan to automatically compute BSI measurements. A training group of 795 bone scans was used in the conditioning process. Independent validation of the method used bone scans obtained ≤3 mo from diagnosis of 384 PCa cases in two large population-based cohorts. An experienced analyser (blinded to case identity, prior BSI, and outcome) scored the BSI measurements twice. We measured prediction of outcome using pretreatment Gleason score, clinical stage, and prostate-specific antigen with models that also incorporated either manual or automated BSI measurements. MEASUREMENTS: The agreement between methods was evaluated using Pearson's correlation coefficient. Discrimination between prognostic models was assessed using the concordance index (C-index).



RESULTS AND LIMITATIONS:

Manual and automated BSI measurements were strongly correlated (ρ=0.80), correlated more closely (ρ=0.93) when excluding cases with BSI scores ≥10 (1.8%), and were independently associated with PCa death (p<0.0001 for each) when added to the prediction model. Predictive accuracy of the base model (C-index: 0.768; 95% confidence interval [CI], 0.702-0.837) increased to 0.794 (95% CI, 0.727-0.860) by adding manual BSI scoring, and increased to 0.825 (95% CI, 0.754-0.881) by adding automated BSI scoring to the base model. CONCLUSIONS: Automated BSI scoring, with its 100% reproducibility, reduces turnaround time, eliminates operator-dependent subjectivity, and provides important clinical information comparable to that of manual BSI scoring.

Avdelning/ar

  • Klinisk kemi, Malmö
  • Urologisk cancerforskning, Malmö
  • Urological research, Malmö
  • Kirurgi
  • Beräkningsbiologi och biologisk fysik - Har omorganiserats
  • Nuklearmedicin, Malmö
  • Institutionen för astronomi och teoretisk fysik - Har omorganiserats
  • EpiHealth: Epidemiology for Health
  • BioCARE: Biomarkers in Cancer Medicine improving Health Care, Education and Innovation

Publiceringsår

2012

Språk

Engelska

Sidor

78-84

Publikation/Tidskrift/Serie

European Urology

Volym

62

Issue

1

Dokumenttyp

Artikel i tidskrift

Förlag

Elsevier

Ämne

  • Urology and Nephrology

Aktiv

Published

Forskningsgrupp

  • Clinical Chemistry, Malmö
  • Urological cancer, Malmö
  • Urological research, Malmö
  • Surgery
  • Nuclear medicine, Malmö

ISBN/ISSN/Övrigt

  • ISSN: 1873-7560