Webbläsaren som du använder stöds inte av denna webbplats. Alla versioner av Internet Explorer stöds inte längre, av oss eller Microsoft (läs mer här: * https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Var god och använd en modern webbläsare för att ta del av denna webbplats, som t.ex. nyaste versioner av Edge, Chrome, Firefox eller Safari osv.

Marianne Hall foto

Marianne Hall

Forskningskoordinator

Marianne Hall foto

Physiological acclimation dampens initial effects of elevated temperature and atmospheric CO2 concentration in mature boreal Norway spruce

Författare

  • Shubhangi Lamba
  • Marianne Hall
  • Mats Räntfors
  • Nitin Chaudhary
  • Sune Linder
  • Danielle Way
  • Johan Uddling
  • Göran Wallin

Summary, in English

Physiological processes of terrestrial plants regulate the land-atmosphere exchange of carbon, water, and energy, yet few studies have explored the acclimation responses of mature boreal conifer trees to climate change. Here we explored the acclimation responses of photosynthesis, respiration, and stomatal conductance to elevated temperature and/or CO2 concentration ([CO2]) in a 3-year field experiment with mature boreal Norway spruce. We found that elevated [CO2] decreased photosynthetic carboxylation capacity (-23% at 25 °C) and increased shoot respiration (+64% at 15 °C), while warming had no significant effects. Shoot respiration, but not photosynthetic capacity, exhibited seasonal acclimation. Stomatal conductance at light saturation and a vapour pressure deficit of 1 kPa was unaffected by elevated [CO2] but significantly decreased (-27%) by warming, and the ratio of intercellular to ambient [CO2] was enhanced (+17%) by elevated [CO2] and decreased (-12%) by warming. Many of these responses differ from those typically observed in temperate tree species. Our results show that long-term physiological acclimation dampens the initial stimulation of plant net carbon assimilation to elevated [CO2], and of plant water use to warming. Models that do not account for these responses may thus overestimate the impacts of climate change on future boreal vegetation-atmosphere interactions.

Avdelning/ar

  • Centrum för miljö- och klimatvetenskap (CEC)
  • Institutionen för naturgeografi och ekosystemvetenskap
  • MERGE: ModElling the Regional and Global Earth system

Publiceringsår

2018-02

Språk

Engelska

Sidor

300-313

Publikation/Tidskrift/Serie

Plant, Cell and Environment

Volym

41

Issue

2

Dokumenttyp

Artikel i tidskrift

Förlag

Wiley-Blackwell

Ämne

  • Climate Research
  • Forest Science

Nyckelord

  • Carboxylation efficiency
  • Intercellular CO concentration
  • Picea abies
  • Transpiration
  • V
  • Whole-tree chambers

Aktiv

Published

ISBN/ISSN/Övrigt

  • ISSN: 0140-7791