Webbläsaren som du använder stöds inte av denna webbplats. Alla versioner av Internet Explorer stöds inte längre, av oss eller Microsoft (läs mer här: * https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Var god och använd en modern webbläsare för att ta del av denna webbplats, som t.ex. nyaste versioner av Edge, Chrome, Firefox eller Safari osv.

Porträttbild. Foto.

Carl Troein

Forskare

Porträttbild. Foto.

Regulation of fungal decomposition at single-cell level

Författare

  • Michiel Op De Beeck
  • Carl Troein
  • Syahril Siregar
  • Luigi Gentile
  • Giuseppe Abbondanza
  • Carsten Peterson
  • Per Persson
  • Anders Tunlid

Summary, in English

Filamentous fungi play a key role as decomposers in Earth’s nutrient cycles. In soils, substrates are heterogeneously distributed in microenvironments. Hence, individual hyphae of a mycelium may experience very different environmental conditions simultaneously. In the current work, we investigated how fungi cope with local environmental variations at single-cell level. We developed a method based on infrared spectroscopy that allows the direct, in-situ chemical imaging of the decomposition activity of individual hyphal tips. Colonies of the ectomycorrhizal Basidiomycete Paxillus involutus were grown on liquid media, while parts of colonies were allowed to colonize lignin patches. Oxidative decomposition of lignin by individual hyphae growing under different conditions was followed for a period of seven days. We identified two sub-populations of hyphal tips: one with low decomposition activity and one with much higher activity. Active cells secreted more extracellular polymeric substances and oxidized lignin more strongly. The ratio of active to inactive hyphae strongly depended on the environmental conditions in lignin patches, but was further mediated by the decomposition activity of entire mycelia. Phenotypic heterogeneity occurring between genetically identical hyphal tips may be an important strategy for filamentous fungi to cope with heterogeneous and constantly changing soil environments.

Avdelning/ar

  • MEMEG
  • BECC: Biodiversity and Ecosystem services in a Changing Climate
  • Mikrobiologisk ekologi
  • Beräkningsbiologi och biologisk fysik - Genomgår omorganisation
  • Synkrotronljusfysik
  • NanoLund: Centre for Nanoscience
  • Centrum för miljö- och klimatvetenskap (CEC)

Publiceringsår

2020-04

Språk

Engelska

Sidor

896-905

Publikation/Tidskrift/Serie

ISME Journal

Volym

14

Issue

4

Dokumenttyp

Artikel i tidskrift

Förlag

Nature Publishing Group

Ämne

  • Microbiology
  • Other Physics Topics

Status

Published

Projekt

  • MICCS - Molecular Interactions Controlling soil Carbon Sequestration

Forskningsgrupp

  • Microbial Ecology

ISBN/ISSN/Övrigt

  • ISSN: 1751-7362