Webbläsaren som du använder stöds inte av denna webbplats. Alla versioner av Internet Explorer stöds inte längre, av oss eller Microsoft (läs mer här: * https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Var god och använd en modern webbläsare för att ta del av denna webbplats, som t.ex. nyaste versioner av Edge, Chrome, Firefox eller Safari osv.

Foto på Anders Irbäck

Anders Irbäck

Professor

Foto på Anders Irbäck

Finite-size scaling analysis of protein droplet formation

Författare

  • Daniel Nilsson
  • Anders Irbäck

Summary, in English

The formation of biomolecular condensates inside cells often involve intrinsically disordered proteins (IDPs), and several of these IDPs are also capable of forming dropletlike dense assemblies on their own, through liquid-liquid phase separation. When modeling thermodynamic phase changes, it is well known that finite-size scaling analysis can be a valuable tool. However, to our knowledge, this approach has not been applied before to the computationally challenging problem of modeling sequence-dependent biomolecular phase separation. Here we implement finite-size scaling methods to investigate the phase behavior of two 10-bead sequences in a continuous hydrophobic-polar protein model. Combined with reversible explicit-chain Monte Carlo simulations of these sequences, finite-size scaling analysis turns out to be both feasible and rewarding, despite relying on theoretical results for asymptotically large systems. While both sequences form dense clusters at low temperature, this analysis shows that only one of them undergoes liquid-liquid phase separation. Furthermore, the transition temperature at which droplet formation sets in is observed to converge slowly with system size, so that even for our largest systems the transition is shifted by about 8%. Using finite-size scaling analysis, this shift can be estimated and corrected for.

Avdelning/ar

  • Beräkningsbiologi och biologisk fysik - Genomgår omorganisation
  • eSSENCE: The e-Science Collaboration
  • Beräkningsvetenskap för hälsa och miljö

Publiceringsår

2020

Språk

Engelska

Publikation/Tidskrift/Serie

Physical Review E

Volym

101

Issue

2

Dokumenttyp

Artikel i tidskrift

Förlag

American Physical Society

Ämne

  • Other Physics Topics
  • Biophysics

Status

Published

Forskningsgrupp

  • Computational Science for Health and Environment

ISBN/ISSN/Övrigt

  • ISSN: 2470-0045