The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Portrait image of Richard Walters. Photo.

Richard Walters

Researcher

Portrait image of Richard Walters. Photo.

Evaluating the effects of integrating trees into temperate arable systems on pest control and pollination

Author

  • Tom Staton
  • Richard J. Walters
  • Jo Smith
  • Robbie D. Girling

Summary, in English

Agroforestry systems, which incorporate trees into agricultural land, could contribute to sustainable agricultural intensification as they have been shown to increase land productivity, biodiversity and some regulating ecosystem services. However, the effect of temperate agroforestry systems on pest control and pollination services has not been comprehensively reviewed, despite the importance of these services for sustainable intensification. We review and analyse the available evidence for silvoarable agroforestry systems, following which we propose a predictive framework for future research to explain the observed variation in results, based on ecological theory and evidence from analogous systems. Of the 12 studies included in our meta-analysis of natural enemies and pests, the observed increases in natural enemy abundance (+24%) and decreases in arthropod herbivore/pest abundance (−25%) in silvoarable systems were both significant, but molluscan pests were more abundant in silvoarable systems in the two available studies. Only three studies reported effects on pollinators, but all found higher abundance in silvoarable compared with arable systems. Measures of pest control or pollination service are scarce, but suggest stronger effect sizes. Our framework seeks to establish hypotheses for future research through an interpretation of our findings in the context of the wider literature, including landscape characteristics, silvoarable system design and management, system maturity, trophic interactions and experimental design. The findings of this study suggest that silvoarable systems can contribute to sustainable intensification by enhancing beneficial invertebrates and suppressing arthropod pests compared with arable, but future research should include measures of pest control and pollination and implications for productivity and economic value.

Department/s

  • Centre for Environmental and Climate Science (CEC)

Publishing year

2019

Language

English

Publication/Series

Agricultural Systems

Volume

176

Document type

Journal article review

Publisher

Elsevier

Topic

  • Environmental Sciences related to Agriculture and Land-use

Keywords

  • Agroforestry
  • Alley cropping
  • Conservation biological control
  • Natural enemies
  • Pollinators
  • Sustainable agriculture

Status

Published

ISBN/ISSN/Other

  • ISSN: 0308-521X