The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Portrait image of Richard Walters. Photo.

Richard Walters

Researcher

Portrait image of Richard Walters. Photo.

Floristic change in Brazil's Southern Atlantic forest biodiversity hotspot : From the last glacial maximum to the late 21st century

Author

  • Oliver J. Wilson
  • Francis E. Mayle
  • Richard J. Walters
  • Débora V. Lingner
  • Alexander C. Vibrans

Summary, in English

Brazil's Atlantic Forest biome is one of the world's biodiversity hotspots, whose heterogeneous ecosystems are threatened by habitat loss and climate change. Palaeoecological research can provide essential context for the impacts of anthropogenic climate change in the 21st Century and beyond, but existing studies have notable limitations in the insights they can provide: vegetation proxy data are spatially and temporally skewed with inconsistent taxonomic resolution; existing modelling studies typically overlook individualistic species-level responses, are limited in temporal coverage, and lack close integration with empirical palaeoecological data. Here, we investigate the impact of major climate changes upon the species-level floristic composition of southern Brazil's Atlantic Forest, from the Last Glacial Maximum (LGM) to the late 21st century, by modelling the distributions of 30 key species at seven time slices since the LGM and comparing the assemblages they form with an unprecedented dataset of palaeoecological proxy data. We find notable compositional changes through time across our study area, especially during the early Holocene, which was characterised by extensive no-analogue plant communities. Aspects of these modelled floristic changes are captured in proxy records but many occur in data-sparse regions, highlighting geographic foci for future palaeoecological investigation to test these model predictions. Our findings highlight the individualistic responses of Atlantic Forest plant species to climate change and help resolve long-standing palaeoecological questions – explaining the dominance of highland grasslands at the Last Glacial Maximum (likely due to low atmospheric CO2 concentrations), clarifying the LGM extent of coastal tropical forest (probably in a grassland matrix on exposed continental shelf), and explaining the origins of Araucaria angustifolia's western populations (from climatic (micro-)refugia rather than human-mediated dispersal). Our results also set the 21st Century's impending climate and vegetation changes in a 21,000-year temporal context, revealing that, under a high emissions scenario, more than 100,000 km2 of the southern Atlantic Forest will experience more climate-driven floristic change in the coming decades than it has in the last 21 millennia.

Department/s

  • Centre for Environmental and Climate Science (CEC)
  • BECC: Biodiversity and Ecosystem services in a Changing Climate
  • Biodiversity

Publishing year

2021-07-15

Language

English

Publication/Series

Quaternary Science Reviews

Volume

264

Document type

Journal article

Publisher

Elsevier

Topic

  • Climate Research
  • Ecology

Keywords

  • Anthropocene
  • Atlantic forest
  • Biodiversity hotspot
  • Climate change
  • Conservation
  • Late quaternary
  • Palaeoecology
  • Present
  • South America
  • Vegetation dynamics

Status

Published

ISBN/ISSN/Other

  • ISSN: 0277-3791