The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Portrait image of Richard Walters. Photo.

Richard Walters

Researcher

Portrait image of Richard Walters. Photo.

Integrating the influence of weather into mechanistic models of butterfly movement

Author

  • Luke C Evans
  • Richard M Sibly
  • Pernille Thorbek
  • Ian Sims
  • Tom H Oliver
  • Richard J Walters

Summary, in English

Background: Understanding the factors influencing movement is essential to forecasting species persistence in a changing environment. Movement is often studied using mechanistic models, extrapolating short-term observations of individuals to longer-term predictions, but the role of weather variables such as air temperature and solar radiation, key determinants of ectotherm activity, are generally neglected. We aim to show how the effects of weather can be incorporated into individual-based models of butterfly movement thus allowing analysis of their effects.

Methods: We constructed a mechanistic movement model and calibrated it with high precision movement data on a widely studied species of butterfly, the meadow brown (Maniola jurtina), collected over a 21-week period at four sites in southern England. Day time temperatures during the study ranged from 14.5 to 31.5 °C and solar radiation from heavy cloud to bright sunshine. The effects of weather are integrated into the individual-based model through weather-dependent scaling of parametric distributions representing key behaviours: the durations of flight and periods of inactivity.

Results: Flight speed was unaffected by weather, time between successive flights increased as solar radiation decreased, and flight duration showed a unimodal response to air temperature that peaked between approximately 23 °C and 26 °C. After validation, the model demonstrated that weather alone can produce a more than two-fold difference in predicted weekly displacement.

Conclusions: Individual Based models provide a useful framework for integrating the effect of weather into movement models. By including weather effects we are able to explain a two-fold difference in movement rate of M. jurtina consistent with inter-annual variation in dispersal measured in population studies. Climate change for the studied populations is expected to decrease activity and dispersal rates since these butterflies already operate close to their thermal optimum.

Department/s

  • Centre for Environmental and Climate Science (CEC)

Publishing year

2019

Language

English

Publication/Series

Movement Ecology

Volume

7

Document type

Journal article

Publisher

BioMed Central (BMC)

Topic

  • Ecology

Status

Published

ISBN/ISSN/Other

  • ISSN: 2051-3933