Your browser has javascript turned off or blocked. This will lead to some parts of our website to not work properly or at all. Turn on javascript for best performance.

The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Per Persson. Photo.

Per Persson

Director

Per Persson. Photo.

Protonation and charging of nanosized gibbsite (alpha-Al(OH)(3)) particles in aqueous suspension

Author

  • J. Rosenqvist
  • Per Persson
  • S. Sjoberg

Summary, in English

Synthetic gibbsite was prepared and thoroughly characterized using X-ray diffraction, high-resolution transmission electron microscopy, atomic force microscopy, and Fourier transform infrared techniques. The protonation and charging of the particle surface(s) in 20 and 100 mM (Na)Cl ionic media were investigated using potentiometric titrations and zeta potential measurements. These measurements indicated a pH(pznpe) = 9.0 +/- 0.2 and pH(IEP) = 10.0 +/- 0.1. Furthermore, it was concluded that the concentration of singly coordinated sites (equivalent toAlOH) located at the edges of the particles is too low (less than 7% of the total number of crystallographic sites) to explain the proton uptake. Therefore, the doubly coordinated sites (equivalent toAl(2)OH) on the basal planes must be proton reactive. Both proton data and zeta potentials could be described using a three-plane model where adsorbed Na+ at the basal planes was placed in the I-plane and all other adsorbed medium ions were placed in the 2-plane. The following results were obtained: Basal planes equivalent toAl(2)OH + H+ + Cl- reversible arrowequivalent toAl(2)OH(2) Cl-+(-) Igk = 8.49 +/- 0.01 (1) equivalent toAl(2)OH + Na+ reversible arrowequivalent toAl(2)O(-)Na(+) + H+ IgK = -9.62 +/- 0.01 (2) Edges: equivalent toAIOH(0.5-) + H+ reversible arrowequivalent to AlOH20.5+ IgK = 10.0 (3) equivalent toAlOH(0.5-) + Na+ reversible arrowequivalent to -AlOH0.5-Na+ IgK = 0.1 (4) equivalent toAlOH(2)(0.5+) + Cl- reversible arrowequivalent to AlOH20.5+Cl- Igk = 0.1 (5) The protonation constant for the singly coordinated sites (reaction 3) was set equal to pH(IEP). The values of reactions 4 and 5 were taken from the literature. The effect of different reaction times on proton uptake and zeta potential is highlighted. It is clear that increased "equilibrium times" will result in an increased proton uptake, whereas the zeta potential remains constant. This is also reflected in the divergent models presented in the literature with respect to the protonation and charging properties of gibbsite particles.

Publishing year

2002

Language

English

Pages

4598-4604

Publication/Series

Langmuir

Volume

18

Document type

Journal article

Publisher

The American Chemical Society (ACS)

Topic

  • Earth and Related Environmental Sciences

Status

Published

ISBN/ISSN/Other

  • ISSN: 0743-7463