Your browser has javascript turned off or blocked. This will lead to some parts of our website to not work properly or at all. Turn on javascript for best performance.

The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Per Persson. Photo.

Per Persson

Director

Per Persson. Photo.

Comparison of the adsorption of o-phthalate on boehmite (gamma-AlOOH), aged gamma-Al2O3, and goethite (alpha-FeOOH)

Author

  • Per Persson
  • J. Nordin
  • J. Rosenqvist
  • L. Lovgren
  • L. O. Ohman
  • S. Sjoberg

Summary, in English

This work is concerned with the adsorption of o-phthalate (1,2-benzenedicarboxylate) at the water-metal (hydr)oxide interface. Previously published infrared spectroscopic, potentiometric, and adsorption data characterizing the boehmite (gamma-AlOOH) system are compared with new data collected for o-phthalate adsorption on aged gamma-Al2O3 and goethite (alpha-FeOOH). The study focuses on identifying bonding mechanisms, stoichiometries, and stabilities of the formed complexes, and comparing these among the three systems. Furthermore, the effects of ionic strength and composition of the ionic medium are investigated. The infrared spectroscopic data provided direct, molecular-level evidence for the existence of two dominating surface complexes on all three solids. One was shown to be a deprotonated outer-sphere species and the other was an inner-sphere surface complex. The inner-sphere complexes on the three solids were structurally related, and they were tentatively assigned to a mononuclear, chelating structure involving both carboxylate groups. The outer-sphere complexes were shown to increase in relative importance at high pH and low ionic strengths, while low pH and high ionic strengths favored the inner-sphere complexes. The information gained from the infrared spectroscopic investigations was used as qualitative input in the formulation of the surface complexation models. New models, based on the extended constant capacitance approach, were presented for the o-phthalate/aged gamma-Al2O3 and o-phthalate/goethite systems. (C) 1998 Academic Press.

Publishing year

1998

Language

English

Pages

252-266

Publication/Series

Journal of Colloid and Interface Science

Volume

206

Document type

Journal article

Publisher

Elsevier

Topic

  • Earth and Related Environmental Sciences

Status

Published

ISBN/ISSN/Other

  • ISSN: 1095-7103