The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here:

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Per Persson. Photo.

Per Persson


Per Persson. Photo.

Rethinking Arsenate Coordination at the Surface of Goethite


  • John S. Loring
  • Malin H. Sandstrom
  • Katarina Norén
  • Per Persson

Summary, in English

A fundamental precept of geochemistry is that arsenate coordinates at mineral surfaces in a predominately bridging-bidentate fashion. We show that this is incorrect for the model system, arsenate adsorbed at the surface of goethite (alpha-FeOOH), using a combination of XRD, EXAFS, and IR spectroscopic results. We report the crystal structure of pentaamminecobalt(III) arsenate, which consists of monodentate-coordinated metal-arsenato complexes that have Co-As distances of only 3.25 angstrom. This result implies that metal-arsenic distances are not diagnostic for the coordination mode of arsenate. We show that the K-edge EXAFS spectra of pentaamminecobalt(ill) arsenate and arsenate-goethite surface complexes are strikingly similar, which suggests that arsenate could be coordinated at the goethite surface in a monodentate fashion. Refinements of the k(3)-weighted EXAFS spectra of arsenate adsorbed on goethite results in values of CNAs-Fe between 0.8-1.1 (+/- 0.7), and there is no evidence that the coordination mode of arsenate changes as a function of pH or arsenate surface coverage. We report IR spectra from the first simultaneous IR and potentiometric titration of arsenate adsorbed on deuterated goethite (alpha-FeOOD) in D2O, and we show for the first time the As-O stretching bands of arsenate-goethite surface complexes. We deduce that arsenate-goethite surface complexes are un-, singly, or doubly protonated, depending on pH, from a principal component analysis of the As-O stretching region and an interpretation of the Type-B OH stretching region. In summary, our cumulative results show that arsenate coordinates at the water-goethite interface in a predominately monodentate fashion. Furthermore, we find no evidence for bridging-bidentate coordination, which is a finding that impacts oxoanion bioavailability and challenges theories of mineral dissolution and surface complexation.


  • MAX IV Laboratory
  • Centre for Environmental and Climate Science (CEC)

Publishing year







Chemistry: A European Journal





Document type

Journal article




  • Earth and Related Environmental Sciences
  • Natural Sciences
  • Physical Sciences


  • surface chemistry
  • goethite
  • geochemistry
  • arsenate
  • coordination modes




  • ISSN: 1521-3765