Your browser has javascript turned off or blocked. This will lead to some parts of our website to not work properly or at all. Turn on javascript for best performance.

The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Per Persson. Photo.

Per Persson

Director

Per Persson. Photo.

Benzenecarboxylate surface complexation at the goethite (alpha-FeOOH)/water interface: II. Linking IR spectroscopic observations to mechanistic surface complexation models for phthalate, trimellitate, and pyromellitate

Author

  • J. F. Boily
  • Per Persson
  • S. Sjoberg

Summary, in English

A study combining information from infrared spectroscopy and adsorption experiments was carried out to investigate phthalate, trimellitate, and pyromellitate complexes at the goethite (alpha-FeOOH)/water interface. Infrared spectra showed evidence for inner-sphere complexes below pH 6 and outer-sphere complexes in the pH range 3 to 9. Normalized infrared peak areas were used as a semi-quantitative tool to devise diagrams showing the molecular level surface speciation as a function of pH. Surface complexation models that simultaneously predict these diagrams, the proton balance data and the ligand adsorption data were developed with surface complexation theory. Surface complexation modeling was carried out with a Charge Distribution Multisite Complexation Model (CD-MUSIC), assuming goethite particles with surfaces represented by the {110} plane (90% of total particle surface area) and by the {001} plane (10% of total particle surface area). Inner-sphere complexes were described as mononuclear chelates at the {001} plane, whereas outer-sphere complexes were described as binuclear complexes with singly coordinated sites on the {110} plane. The Three-Plane Model (TPM) was used to described surface electrostatics and to distribute the charges of the inner- and the outer-sphere complexes on different planes of adsorption. Copyright (C) 2000 Elsevier Science Ltd.

Publishing year

2000

Language

English

Pages

3453-3470

Publication/Series

Geochimica et Cosmochimica Acta

Volume

64

Document type

Journal article

Publisher

Elsevier

Topic

  • Earth and Related Environmental Sciences

Status

Published

ISBN/ISSN/Other

  • ISSN: 0016-7037