
Paul Miller
Senior lecturer

The Interplay of Recent Vegetation and Sea Ice Dynamics—Results From a Regional Earth System Model Over the Arctic
Author
Summary, in English
Recent accelerated warming over the Arctic coincides with sea ice reduction and shifting patterns of land cover. We use a state-of-the-art regional Earth system model, RCAO-GUESS, which comprises a dynamic vegetation model (LPJ-GUESS), a regional atmosphere model (RCA), and an ocean sea ice model (RCO), to explore the dynamic coupling between vegetation and sea ice during 1989–2011. Our results show that RCAO-GUESS captures recent trends in observed sea ice concentration and extent, with the inclusion of vegetation dynamics resulting in larger, more realistic variations in summer and autumn than the model that does not account for vegetation dynamics. Vegetation feedbacks induce concomitant changes in downwelling longwave radiation, near-surface temperature, mean sea level pressure, and sea ice reductions, suggesting a feedback chain linking vegetation change to sea ice dynamics. This study highlights the importance of including interactive vegetation dynamics in modeling the Arctic climate system, particularly when predicting sea ice dynamics.
Department/s
- Dept of Physical Geography and Ecosystem Science
- BECC: Biodiversity and Ecosystem services in a Changing Climate
- MERGE: ModElling the Regional and Global Earth system
- eSSENCE: The e-Science Collaboration
- Centre for Environmental and Climate Science (CEC)
Publishing year
2020-03-28
Language
English
Publication/Series
Geophysical Research Letters
Volume
47
Issue
6
Document type
Journal article
Publisher
American Geophysical Union (AGU)
Topic
- Climate Science
Keywords
- Arctic
- Climatic warming
- Coupled
- Regional climate modelling
- Sea ice
- Vegetation feedback
Status
Published
ISBN/ISSN/Other
- ISSN: 0094-8276