The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Natascha Kljun. Photo.

Natascha Kljun

Professor

Natascha Kljun. Photo.

Estimating Canopy Gap Fraction Using ICESat GLAS within Australian Forest Ecosystems

Author

  • Craig Mahoney
  • Chris Hopkinson
  • Natascha Kljun
  • Eva van Gorsel

Summary, in English

Spaceborne laser altimetry waveform estimates of canopy Gap Fraction (GF) vary with respect to discrete return airborne equivalents due to their greater sensitivity to reflectance differences between canopy and ground surfaces resulting from differences in footprint size, energy thresholding, noise characteristics and sampling geometry. Applying scaling factors to either the ground or canopy portions of waveforms has successfully circumvented this issue, but not at large scales. This study develops a method to scale spaceborne altimeter waveforms by identifying which remotely-sensed vegetation, terrain and environmental attributes are best suited to predicting scaling factors based on an independent measure of importance. The most important attributes were identified as: soil phosphorus and nitrogen contents, vegetation height, MODIS vegetation continuous fields product and terrain slope. Unscaled and scaled estimates of GF are compared to corresponding ALS data for all available data and an optimized subset, where the latter produced most encouraging results (R2 = 0.89, RMSE = 0.10). This methodology shows potential for successfully refining estimates of GF at large scales and identifies the most suitable attributes for deriving appropriate scaling factors. Large-scale active sensor estimates of GF can establish a baseline from which future monitoring investigations can be initiated via upcoming Earth Observation missions.

Publishing year

2017-01-11

Language

English

Publication/Series

Remote Sensing

Volume

9

Issue

1

Document type

Journal article

Publisher

MDPI AG

Topic

  • Geophysics

Keywords

  • vegetation
  • remote sensing
  • forestry
  • LiDAR

Status

Published

ISBN/ISSN/Other

  • ISSN: 2072-4292