The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here:

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Photo of Mattias Ohlsson

Mattias Ohlsson


Photo of Mattias Ohlsson

Automated interpretation of myocardial SPECT perfusion images using artificial neural networks


  • Dan Lindahl
  • John Palmer
  • Mattias Ohlsson
  • Carsten Peterson
  • Anders Lundin
  • Lars Edenbrandt

Summary, in English

The purpose of this study was to develop a computer-based method for automatic detection and localization of coronary artery disease (CAD) in myocardial bull's-eye scintigrams. Methods: A population of 135 patients who had undergone both myocardial 99mTc-sestamibi rest-stress scintigraphy and coronary angiography within 3 mo was studied. Different image data reduction methods, including pixel averaging and two-dimensional Fourier transform, were applied to the bull's-eye scintigrams. After a quantitative and qualitative evaluation of these methods, 30 Fourier components were chosen as inputs to multilayer perceptron artificial neural networks. The networks were trained to detect CAD in two vascular territories, using coronary angiography as gold standard. A 'leave one out' procedure was used for training and evaluation. The performance of the networks was compared to those of two human experts. Results: One of the human experts detected CAD in one of two vascular territories, with a sensitivity of 54.4% at a specificity of 70.5%. The sensitivity of the networks was significantly higher at that level of specificity (77.2%, p = 0.0022). The other expert had a sensitivity of 63.2% at a specificity of 61.5%. The networks had a sensitivity of 77.2% (p = 0.038) at this specificity level as well. The differences in sensitivity between human experts and networks for the other vascular territory were all less than 6% and were not statistically significant. Conclusion: Artificial neural networks can detect CAD in myocardial bull's-eye scintigrams with such a high accuracy that the application of neural networks as clinical decision support tools appears to have significant potential.


  • Computational Biology and Biological Physics - Has been reorganised
  • Clinical Physiology (Lund)

Publishing year







Journal of Nuclear Medicine





Document type

Journal article


Society of Nuclear Medicine


  • Cardiac and Cardiovascular Systems


  • Artificial intelligence
  • Computer-assisted
  • Diagnosis
  • Ischemic heart disease
  • Neural networks




  • ISSN: 0161-5505