The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Martijn van Praagh. Photo.

Martijn van Praagh

Adjunct senior lecturer

Martijn van Praagh. Photo.

Potential environmental impacts of using refuse derived material for landfill capping

Author

  • Martijn van Praagh
  • Kenneth M Persson
  • Patrik Karlsson

Summary, in English

In this study, the potential impacts on leachate emissions of applying a pretreated refuse-derived material as a capping layer on top of a municipal solid waste landfill were researched. Leachate emissions and stability against degradation were investigated with reference to the untreated material. Results from percolation leaching tests were analysed by multivariate data analysis and chemical speciation modelling. During 6 month aerobic pretreatment in composting windrows with forced aeration, the waste was stabilized against aerobic degradation measured as respiration activity down to 15% of the original value. Initial percolation leachate concentrations were reduced by 40% for As, by 50% for Co, by 60% for Ni, Pb, and total sulfur, by 40% for sulfate-sulfur, by 96% for ammonium nitrate, and by 62% for dissolved organic carbon. An increase was observed by a factor of 4 for Cd, by a factor of 150 for Cu, by a factor of 3 for Zn. Principle Component Analysis revealed that the leaching characteristics of the pretreated material developed towards those of a top soil used as reference material. Increasing the flow rate in column percolation experiments led to lower leachate concentrations at liquid to solid ratios of 10. Constructing a capping layer from the pretreated material is likely to have impacts on the leachate treatment system.

Department/s

  • Division of Water Resources Engineering

Publishing year

2009

Language

English

Pages

471-488

Publication/Series

Waste Management & Research

Volume

27

Document type

Journal article

Publisher

SAGE Publications

Topic

  • Social Sciences Interdisciplinary
  • Water Engineering

Status

Published

ISBN/ISSN/Other

  • ISSN: 1096-3669