The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Martijn van Praagh. Photo.

Martijn van Praagh

Adjunct senior lecturer

Martijn van Praagh. Photo.

Dielectric properties of MSWI bottom ash for non-invasive monitoring of moisture.

Author

  • Aamir Ilyas
  • Magnus Persson
  • Martijn van Praagh

Summary, in English

The dielectric procperties of MSWI bottom ash as a function of volumetric water content (VWC) are reported in this paper. The objective was to aid the development of microwave based non-invasive emission monitoring and control system for various bottom ash applications. The dielectric measurements were made, on a 1.5-year-old bottom ash, with an electrical network analyzer in microwave range (300 MHz-1.5 GHz). The VWC of the samples ranged between 0.05 and 0.40 m(3) m(-3). The relationship between the dielectric permittivity and the VWC was modeled with an empirical model and a physically based Birchak model (BM). The results showed that a linear relationship existed between the permittivity and the VWC at higher water contents (>0.25 m(3) m(-3)). However, at lower water contents (<0.25 m(3) m(-3)), the relationship between the permittivity and the WVC was affected by the composition of the bottom ash. The permittivity measurement, with the current method, was not affected by high salt concentrations (10 and 20 dS/m). The empirical model, as compared to BM, provided the best fit between the actual and the predicted water content. The root mean square error (RMSE) values were 0.008-0.010 and 0.06-0.09 m(3) m(-3) for the empirical and the Birchak model, respectively.

Department/s

  • Division of Water Resources Engineering
  • Centre for Environmental and Climate Science (CEC)

Publishing year

2013

Language

English

Pages

7053-7063

Publication/Series

Environmental Monitoring & Assessment

Volume

185

Issue

8

Document type

Journal article

Publisher

Springer

Topic

  • Water Engineering
  • Earth and Related Environmental Sciences

Status

Published

ISBN/ISSN/Other

  • ISSN: 1573-2959