The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Hakim Abdi. Photo.

Hakim Abdi

Researcher

Hakim Abdi. Photo.

Estimating Grazing Potentials in Sudan Using Daily Carbon Allocation in Dynamic Vegetation Model

Author

  • Niklas Boke-Olén
  • Veiko Lehsten
  • Abdulhakim M. Abdi
  • Jonas Ardö
  • Abdelrahman A. Khatir

Summary, in English

Livestock production is important for local food security and as a source of income in sub-Saharan Africa. The human population of the region is expected to double by 2050, and at the same time climate change is predicted to negatively affect grazing resources vital to livestock. Therefore, it is essential to model the potential grazing output of sub-Saharan Africa in both present and future climatic conditions. Standard tools to simulate plant productivity are dynamic vegetation models (DVMs). However, as they typically allocate carbon to plant growth at an annual time step, they have a limited capability to simulate grazing. Here, we present a novel implementation of daily carbon allocation for grasses into the DVM Lund-Potsdam-Jena General Ecosystem Simulator (LPJ-GUESS) and apply this to study the grazing potential for the Kordofan region in Sudan. The results show a latitudinal split in grazing resources, where the northern parts of Kordofan are unexploited and southern parts are overused. Overall, we found that the modeled grazing potential of Kordofan is 16% higher than the livestock usage reported in the Food and Agricultural Organization of the United Nations, indicating a mitigation potential in the form of a spatial relocation of the herds.

Department/s

  • Dept of Physical Geography and Ecosystem Science
  • BECC: Biodiversity and Ecosystem services in a Changing Climate
  • MERGE: ModElling the Regional and Global Earth system

Publishing year

2018-08-01

Language

English

Pages

792-797

Publication/Series

Rangeland Ecology and Management

Volume

71

Issue

6

Document type

Journal article

Publisher

Society of Environmental Toxicology and Chemistry

Topic

  • Physical Geography
  • Environmental Sciences

Keywords

  • Sudan
  • Climate change
  • grazing
  • Kordofan
  • livestock
  • LPJ-GUESS
  • Africa
  • Sahel
  • Drylands

Status

Published

Project

  • Global Savannah Phenology: Integrating Earth Observation, Ecosystem Modeling, and PhenoCams

ISBN/ISSN/Other

  • ISSN: 1550-7424