
Carl Troein
Researcher

Superpolynomial growth in the number of attractors in Kauffman networks (conference report)
Author
Summary, in English
The Kauffman model describes a particularly simple class of random Boolean networks. Despite the simplicity of the model, it exhibits complex behavior and has been suggested as a model for real world network problems. This work is based on an earlier paper where we introduced a novel approach to analyzing attractors in random Boolean networks. Applying this approach to Kauffman networks, we prove that the average number of attractors grows faster than any power law with system size.
Department/s
- Computational Biology and Biological Physics - Undergoing reorganization
- Functional zoology
Publishing year
2003
Language
English
Pages
5051-5061
Publication/Series
Acta Physica Polonica B
Volume
34
Issue
10
Document type
Journal article
Publisher
Jagellonian University, Cracow, Poland
Topic
- Zoology
- Biophysics
Status
Published
ISBN/ISSN/Other
- ISSN: 1509-5770