The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Profile picture. Photo.

Carl Troein

Researcher

Profile picture. Photo.

Weather and Seasons Together Demand Complex Biological Clocks

Author

  • Carl Troein
  • James C.W. Locke
  • Matthew S. Turner
  • Andrew J. Millar

Summary, in English

The 24-hour rhythms of the circadian clock [1] allow an organism to anticipate daily environmental cycles, giving it a competitive advantage [2, 3]. Although clock components show little protein sequence homology across phyla, multiple feedback loops and light inputs are universal features of clock networks [4, 5]. Why have circadian systems evolved such a complex structure? All biological clocks entrain a set of regulatory genes to the environmental cycle, in order to correctly time the expression of many downstream processes. Thus the question becomes: What aspects of the environment, and of the desired downstream regulation, are demanding the observed complexity? To answer this, we have evolved gene regulatory networks in silico, selecting for networks that correctly predict particular phases of the day under light/dark cycles. Gradually increasing the realism of the environmental cycles, we have tested the networks for the minimal characteristics of clocks observed in nature: oscillation under constant conditions, entrainment to light signals, and the presence of multiple feedback loops and light inputs. Realistic circadian gene networks are found to require a nontrivial combination of conditions, with seasonal differences in photoperiod as a necessary but not sufficient component.

Publishing year

2009-12-01

Language

English

Pages

1961-1964

Publication/Series

Current Biology

Volume

19

Issue

22

Document type

Journal article

Publisher

Elsevier

Topic

  • Bioinformatics and Systems Biology

Keywords

  • SYSBIO

Status

Published

ISBN/ISSN/Other

  • ISSN: 0960-9822