A natural phenomenon turned nasty: Where, when, and why will cyanobacterial blooms be toxic?

Karin Rengefors, Anna Godhe (Göteborg) Catherine Legrand (Linné)
Cyanobacterial bloom-forming species

Microcystis spp.

Aphanizomenon flos-aquae

Anabaena spp.

Planktothrix agardhii
Algal blooms
Cyanotoxins toxic to humans when found in drinking water

Health Impacts of Cyanotoxins

Note: Not all cyanotoxins lead to all of these health impacts. These listed impacts are caused by microcystins or cylindrospermopsin, the two cyanotoxins that EPA has issued Health Advisories for.

IN HUMANS

Brain
Source: Ingestion
Symptoms:
- Headache
- Incoherent speech
- Drowsiness
- Loss of coordination

Respiratory System
Source: Inhalation
Symptoms:
- Dry cough
- Pneumonia
- Sore throat
- Shortness of breath
- Loss of coordination

Digestive System
Source: Ingestion, drinking contaminated water, or eating contaminated fish
Symptoms:
- Abdominal pain
- Nausea
- Vomiting
- Diarrhea
- Stomach cramps

Body
Source: Contact, e.g. swimming
Symptoms:
- Irritation in eyes, nose, and throat
- Blistering around the mouth
- Skin rash, including tingling, burning and numbness
- Fever
- Muscle aches (from ingestion)
- Weakness (from ingestion)

Organs
Source: Ingestion
Symptoms:
- Kidney damage
- Abnormal kidney function
- Liver inflammation

Nervous System
Source: Ingestion
Symptoms:
- Tingling
- Burning
- Numbness

IN PETS

Symptoms:
- Vomiting
- Fatigue
- Shortness of breath
- Difficulty breathing
- Coughing
- Convulsions
- Liver failure
- Respiratory paralysis leading to death
What we know:

• **Nutrients** stimulate cyanobacterial blooms
• **Warmer waters** favor cyanobacterial blooms
• We know which species produce toxins (e.g. *Microcystis*)
• Cyanobacterial blooms are increasing world-wide
Don’t know where and when blooms will be toxic
Due to intraspecific variability – not all strains are toxic!
Don’t know why toxic
Not certain why cyanobacteria produce toxins (microcystin)

- role in carbon uptake & photosynthesis
- functions as grazer/parasite deterrent
Overall aim

- understand temporal and spatial patterns of toxic and non-toxic *Microcystis botrys* populations
- investigate the underlying function of toxicity
- Develop an early-warning detection tool of toxic *Microcystis* blooms optimized for Swedish conditions.
Stakeholder collaboration

• Information stakeholders – symposium for organizations responsible for water management (HAV, länsstyrelse, SMHI, Livsmedelsverket etc)

• Tool stakeholders – continuous contact with company, LU innovation, and waterworks (ie Sydvatten)
about this grant proposal

• Worked and reworked (third time’s a charm)
• Environmental problem is urgent and relevant
• Solid theoretical basis
• New approach
• Novel technology
• Competitive group (track record, competence)