The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Per Persson. Photo.

Per Persson

Dean

Per Persson. Photo.

Adsorption of alpha amino acids at the water/goethite interface

Author

  • Katarina Noren
  • John S. Loring
  • Per Persson

Summary, in English

The adsorption of amino acids onto mineral surfaces plays an important role in a wide range of areas, e.g., low-temperature aqueous geochemistry, bone formation and protein-bone interactions. In this work, the adsorption of three alpha aminoacids (sarcosine, MIDA and EDDA) onto goethite (alpha-FeOOH) was studied as a function of pH and background electrolyte concentration at 25.0 degrees C, and the molecular structures of the surface complexes formed were analyzed by means of ATR-FTIR spectroscopy. The results showed that adsorption of alpha amino acids were strongly dependent on the functionality and structure of the ligands. No adsorption was detected for the zwitterionic sarcosine indicating that simple alpha amino acids without other ionizable and/or functional groups display insignificant affinity for mineral surfaces such as goethite. With respect to the more complex amino acids, which are surface reactive, the number and relative positions of carboxylate and amine groups determine the types of surface interactions. These interactions range from non-specific outer-sphere to specific inner-sphere interactions as shown by the MIDA and EDDA results, respectively. The results presented herein suggest that isomerically-selective adsorption might only occur for amino acids that are capable of specific surface interactions, either through site-specific hydrogen bonding or inner-sphere complexation. (C) 2007 Elsevier Inc. All rights reserved.

Publishing year

2008

Language

English

Pages

416-428

Publication/Series

Journal of Colloid and Interface Science

Volume

319

Document type

Journal article

Publisher

Elsevier

Topic

  • Earth and Related Environmental Sciences

Status

Published

ISBN/ISSN/Other

  • ISSN: 1095-7103